cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181152 Decimal expansion of Madelung constant (negated) for the CsCl structure.

This page as a plain text file.
%I A181152 #40 Oct 06 2021 03:28:48
%S A181152 1,7,6,2,6,7,4,7,7,3,0,7,0,9,8,8,3,9,7,9,3,5,6,7,3,3,2,0,6,3,8,6,4,4,
%T A181152 2,9,1,1,7,0,5,2,8,6,1,9,5,8,8,5,8,5,2,8,0,6,4,9,4,1,8,4,3,7,7,2,7,9,
%U A181152 6,6,2,2,3,7,6,9,3,4,0,8,3,0,4,7,1,5,0,9,4,5,8,1,1,2,1,6,9,8,8,9,0,8,5,6,9
%N A181152 Decimal expansion of Madelung constant (negated) for the CsCl structure.
%C A181152 This is often quoted for a different lattice constant and multiplied by 2/sqrt(3) = 1.1547... = 10*A020832, which gives 1.76267...*1.1547... = 2.03536151... given in Zucker's Table 5 as the alpha for the CsCl structure, and by Sakamoto as the M_d for the B2 lattice. Given Zucker's b(1) = 0.774386141424002815... = A185577, this constant here is sqrt(3)*(3*b(1)+A085469)/4. - _R. J. Mathar_, Jan 28 2011
%C A181152 The CsCl structure consists of two interpenetrating simple cubic lattices of ions with charges +1 and -1, together occupying all the sites of the body-centered cubic lattice. - _Andrey Zabolotskiy_, Oct 21 2019
%H A181152 Leslie Glasser, <a href="https://doi.org/10.1021/ic2023852">Solid-State Energetics and Electrostatics: Madelung Constants and Madelung Energies</a>, Inorg. Chem., 2012, 51 (4), 2420-2424.
%H A181152 Y. Sakamoto, <a href="https://doi.org/10.1063/1.1744060">Madelung Constants of Simple Crystals Expressed in Terms of Born's Basic Potentials of 15 Figures</a>, Journal of Chemical Physics, 28 (1958), 164-165.  Errata: <a href="https://doi.org/10.1063/1.1744237">J. Chem. Phys, 28 (1958), 733</a>; <a href="https://doi.org/10.1063/1.1744387">J. Chem. Phys, 28 (1958), 1253</a>.
%H A181152 Nicolas Tavernier, Gian Luigi Bendazzoli, Véronique Brumas, Stefano Evangelisti, and J. A. Berger, <a href="https://doi.org/10.1021/acs.jpclett.0c01684">Clifford boundary conditions: a simple direct-sum evaluation of Madelung constants</a>, J. Phys. Chem. Lett., 11 (2020), 7090-7095; arXiv:<a href="https://arxiv.org/abs/2006.01259">2006.01259</a> [physics.comp-ph], 2020.
%H A181152 I. J. Zucker, <a href="https://doi.org/10.1088/0305-4470/8/11/008">Madelung constants and lattice sums for invariant cubic lattice complexes and certain tetragonal structures</a>, J. Phys. A: Math. Gen. 8 (11) (1975) 1734.
%H A181152 Wikipedia, <a href="https://en.wikipedia.org/wiki/Madelung_constant">Madelung constant</a>
%t A181152 digits = 105;
%t A181152 m0 = 50; (* initial number of terms *)
%t A181152 dm = 10; (* number of terms increment *)
%t A181152 dd = 10; (* precision excess *)
%t A181152 Clear[f];
%t A181152 f[n_, p_] := f[n, p] = (s = Sqrt[n^2 + p^2]; ((2 + (-1)^n) Csch[s*Pi])/s // N[#, digits + dd]&);
%t A181152 f[m_] := f[m] = Pi/2 - (7 Log[2])/2 + 4 Sum[f[n, p], {n, 1, m}, {p, 1, m}];
%t A181152 f[m = m0];
%t A181152 f[m += dm];
%t A181152 While[Abs[f[m] - f[m - dm]] > 10^(-digits - dd), Print["f(", m, ") = ", f[m]]; m += dm];
%t A181152 A185577 = f[m];
%t A181152 Clear[g];
%t A181152 g[m_] := g[m] = 12 Pi Sum[Sech[(Pi/2) Sqrt[(2 j + 1)^2 + (2 k + 1)^2]]^2, {j, 0, m}, {k, 0, m}] // N[#, digits + dd]&;
%t A181152 g[m = m0];
%t A181152 g[m += dm];
%t A181152 While[Abs[g[m] - g[m - dm]] > 10^(-digits - dd), Print["g(", m, ") = ", g[m]]; m += dm];
%t A181152 A085469 = g[m];
%t A181152 A181152 = Sqrt[3] (A085469 - 3 A185577)/4;
%t A181152 RealDigits[A181152, 10, digits][[1]] (* _Jean-François Alcover_, May 07 2021 *)
%Y A181152 Cf. A085469, A088537, A090734.
%K A181152 nonn,cons
%O A181152 1,2
%A A181152 _Leslie Glasser_, Jan 24 2011
%E A181152 More terms (using the above comment from _R. J. Mathar_ and terms from the b-files for A085469 and A185577) from _Jon E. Schoenfield_, Mar 10 2018
%E A181152 Definition corrected by _Andrey Zabolotskiy_, Oct 21 2019
%E A181152 a(88)-a(105) from _Jean-François Alcover_, May 07 2021