A181157 a(n) is the greatest integer such that the occurrence rate of integers k and above in {a(1), ..., a(n)} <= 1/k for all positive integers k.
1, 2, 1, 4, 1, 3, 1, 2, 1, 10, 1, 6, 1, 2, 1, 5, 1, 3, 1, 2, 1, 22, 1, 4, 1, 2, 1, 9, 1, 3, 1, 2, 1, 8, 1, 7, 1, 2, 1, 5, 1, 3, 1, 2, 1, 46, 1, 4, 1, 2, 1, 17, 1, 3, 1, 2, 1, 14, 1, 6, 1, 2, 1, 4, 1, 3, 1, 2, 1, 35, 1, 12, 1, 2, 1, 5, 1, 3, 1, 2, 1, 11, 1, 4, 1, 2, 1, 8, 1, 3
Offset: 1
Keywords
Examples
Let denote the occurrence rate of integers k and above in {a(1), ..., a(n)} as r(n,k). For example, r(5,2) = 2/5 since {a(1), ..., a(5)} = {1, 2, 1, 4, 1}: integers 2 and above occur twice in them. a(6) can be 3 or above since r(6,1) = 6/6 <= 1/1, r(6,2) = 3/6 <= 1/2, and r(6,3) = 2/6 <= 1/3. But if a(6) >= 4, then r(6,4) = 2/6 > 1/4. Thus a(6) cannot be greater than 3, therefore a(6) = 3.
Links
- Ivan Neretin, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
mx = 60; acc = ConstantArray[0, mx + 1]; a = {}; Do[AppendTo[a, k = Min[Select[Range[mx], n/# - acc[[#]] < 1 &]] - 1]; acc[[Range[k]]]++, {n, mx}]; a (* Ivan Neretin, May 20 2015 *)
Extensions
a(61)-a(90) added from b-file by Charlie Neder, Feb 08 2019
Comments