This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181170 #27 Jun 18 2017 10:12:09 %S A181170 1,0,0,0,0,0,0,0,0,1,1,14 %N A181170 Number of connected 9-regular simple graphs on 2n vertices with girth at least 4. %C A181170 a(11)=14 was computed by the author using GENREG at U. Ncle. over 615 processor days during Dec 2009. %H A181170 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_girth_ge_4">Connected regular graphs with girth at least 4</a> %H A181170 Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_k-reg_girth_ge_g_index">Index of sequences counting connected k-regular simple graphs with girth at least g</a> %H A181170 M. Meringer, <a href="http://www.mathe2.uni-bayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a> %H A181170 M. Meringer, <a href="http://dx.doi.org/10.1002/(SICI)1097-0118(199902)30:2<137::AID-JGT7>3.0.CO;2-G">Fast generation of regular graphs and construction of cages</a>, J. Graph Theory 30 (2) (1999) 137-146. %e A181170 The a(0)=1 null graph is vacuously 8-regular and connected; since it is acyclic then it has infinite girth. %e A181170 The a(9)=1 graph is the complete bipartite graph K_{9,9} with 18 vertices. %e A181170 The a(10)=1 graph has girth 4, automorphism group of order 7257600, and the following adjacency lists: %e A181170 01 : 02 03 04 05 06 07 08 09 10 %e A181170 02 : 01 11 12 13 14 15 16 17 18 %e A181170 03 : 01 11 12 13 14 15 16 17 19 %e A181170 04 : 01 11 12 13 14 15 16 18 19 %e A181170 05 : 01 11 12 13 14 15 17 18 19 %e A181170 06 : 01 11 12 13 14 16 17 18 19 %e A181170 07 : 01 11 12 13 15 16 17 18 19 %e A181170 08 : 01 11 12 14 15 16 17 18 19 %e A181170 09 : 01 11 13 14 15 16 17 18 19 %e A181170 10 : 01 12 13 14 15 16 17 18 19 %e A181170 11 : 02 03 04 05 06 07 08 09 20 %e A181170 12 : 02 03 04 05 06 07 08 10 20 %e A181170 13 : 02 03 04 05 06 07 09 10 20 %e A181170 14 : 02 03 04 05 06 08 09 10 20 %e A181170 15 : 02 03 04 05 07 08 09 10 20 %e A181170 16 : 02 03 04 06 07 08 09 10 20 %e A181170 17 : 02 03 05 06 07 08 09 10 20 %e A181170 18 : 02 04 05 06 07 08 09 10 20 %e A181170 19 : 03 04 05 06 07 08 09 10 20 %e A181170 20 : 11 12 13 14 15 16 17 18 19 %Y A181170 9-regular simple graphs with girth at least 4: this sequence (connected), A185294 (disconnected). %Y A181170 Connected k-regular simple graphs with girth at least 4: A186724 (any k), A186714 (triangle); specified degree k: A185114 (k=2), A014371 (k=3), A033886 (k=4), A058275 (k=5), A058276 (k=6), A181153 (k=7), A181154 (k=8), this sequence (k=9). %Y A181170 Connected 9-regular simple graphs with girth at least g: A014378 (g=3), this sequence (g=4). %Y A181170 Connected 9-regular simple graphs with girth exactly g: A184993 (g=3). %K A181170 nonn,more,hard %O A181170 0,12 %A A181170 _Jason Kimberley_, last week of Jan 2011