A181171 Decimal expansion of the base x for which the double logarithm of 2 equals the natural log of 2, that is, log_x log_x 2 = log 2.
1, 6, 3, 6, 6, 2, 6, 2, 0, 7, 7, 8, 0, 9, 2, 3, 7, 7, 0, 6, 6, 3, 9, 2, 3, 4, 8, 9, 7, 2, 1, 8, 3, 5, 0, 2, 1, 8, 2, 4, 4, 1, 7, 1, 6, 0, 2, 9, 9, 4, 1, 7, 0, 8, 6, 8, 5, 8, 7, 4, 2, 6, 0, 0, 5, 8, 9, 0, 2, 0, 9, 6, 4, 6, 0, 3, 9, 5, 8, 5, 9, 7, 3, 6, 5, 1, 9, 7, 1, 8, 1, 0, 6, 0, 0, 8, 7, 6, 2, 0, 3, 9, 1, 5, 0
Offset: 1
Examples
From _R. J. Mathar_, Oct 09 2010: (Start) 1.63662620778092377066392348972183502182... log_(1.63662..)(2) = 1.4070142427036... log_(1.63662..)(1.407014..) = A002162. (End)
Crossrefs
Cf. A030797, which is the decimal expansion of the base n for which the double logarithm of e (log_n log_n e) = log e = 1, and which is the inverse of LambertW(1).
Programs
-
Maple
f := log(log(2))/log(x)-log(log(x))/log(x)-log(2) ; fz := x-f/diff(f,x) ; z := 1.6 ; Digits := 120 ; for i from 1 to 10 do z := evalf(subs(x=z,fz)) ; print(%) ; end do: # R. J. Mathar, Oct 09 2010
-
Mathematica
RealDigits[ Exp[ ProductLog[Log[2]^2] / Log[2]], 10, 105][[1]] (* Jean-François Alcover, Jan 28 2014 *)
Extensions
More digits from R. J. Mathar, Oct 09 2010