cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181209 Number of n X 5 binary matrices with no two 1's adjacent diagonally or antidiagonally.

Original entry on oeis.org

32, 169, 2117, 17424, 177073, 1630729, 15786848, 149352841, 1429585373, 13610488896, 129934154497, 1238878076401, 11819811992192, 112736763711049, 1075437390934037, 10258292274099984, 97854335246290033, 933422273708422969
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Comments

Column 5 of A181212.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n)=12*a(n-1)-283*a(n-3)+516*a(n-4)+600*a(n-5)-1415*a(n-6)+600*a(n-8)-125*a(n-9),a(1) = 32, a(2) = 169, a(3) = 2117, a(4) = 17424, a(5) = 177073, a(6) = 1630729, a(7) = 15786848, a(8) = 149352841,a(9)=1429585373},a(n),remember):
    map(f, [$1..30]); # Robert Israel, Dec 25 2017
  • Mathematica
    RecurrenceTable[{a[n] == 12*a[n - 1] - 283*a[n - 3] + 516*a[n - 4] + 600*a[n - 5] - 1415*a[n - 6] + 600*a[n - 8] - 125*a[n - 9], a[1] == 32, a[2] == 169, a[3] == 2117, a[4] == 17424, a[5] == 177073, a[6] == 1630729, a[7] == 15786848, a[8] == 149352841, a[9] == 1429585373}, a, {n, 1, 30}] (* Jean-François Alcover, Aug 29 2022, after Robert Israel *)

Formula

Empirical: a(n) = 12*a(n-1) - 283*a(n-3) + 516*a(n-4) + 600*a(n-5) - 1415*a(n-6) + 600*a(n-8) - 125*a(n-9).
Formula verified by Robert Israel, Dec 25 2017 (see link).