cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181216 Number of nX5 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.

This page as a plain text file.
%I A181216 #5 Jul 22 2025 08:36:12
%S A181216 32,1024,16100,337561,7133488,144192064,2970419984,61244865529,
%T A181216 1259243459640,25918851195136,533530588518792,10980680240365081,
%U A181216 226010597463198528,4651909195666878016,95747873079255531440
%N A181216 Number of nX5 binary matrices with no three 1's adjacent in a line diagonally or antidiagonally.
%C A181216 Column 5 of A181217
%H A181216 R. H. Hardin, <a href="/A181216/b181216.txt">Table of n, a(n) for n=1..200</a>
%F A181216 Empirical: a(n)=22*a(n-1)-604*a(n-3)+949*a(n-4)-20374*a(n-5)+353728*a(n-6)-6761420*a(n-7)+2334524*a(n-8)+149227432*a(n-9)+1036912*a(n-10)+786083664*a(n-11)-6348686288*a(n-12)+2369824480*a(n-13)-21332208448*a(n-14)-221813816640*a(n-15)+487649719024*a(n-16)-1323813424928*a(n-17)+9601908443392*a(n-18)+14005763608000*a(n-19)+13939002755200*a(n-20)-41998669585920*a(n-21)-832035107568896*a(n-22)+857664547778560*a(n-23)-263819264052224*a(n-24)-707004879315968*a(n-25)+2352506008625152*a(n-26)-832956887162880*a(n-27)+39015420513468416*a(n-28)-40742830573830144*a(n-29)-953990534791168*a(n-30)-4671459648733184*a(n-31)-53104776120631296*a(n-32)+60132429611663360*a(n-33)+56480529858428928*a(n-34)-59215381128019968*a(n-35)-23629212736815104*a(n-36)+39271321099567104*a(n-37)-45799121633673216*a(n-38)+23340632953061376*a(n-39)-606227585789067264*a(n-40)+652150434290466816*a(n-41)+9621948661235712*a(n-42)+25759689128017920*a(n-43)+209670545225023488*a(n-44)-219911104468353024*a(n-45)-7063606294216704*a(n-46)-10420071696433152*a(n-48)+9618527719784448*a(n-49)
%e A181216 Some avoided solutions for 3X5
%e A181216 ..1..0..0..1..0....1..0..1..0..0....0..1..0..0..0....1..0..0..0..0
%e A181216 ..0..0..1..0..0....0..0..0..1..0....0..0..1..0..0....0..1..0..0..0
%e A181216 ..0..1..0..0..0....0..0..0..0..1....1..0..0..1..0....1..0..1..0..0
%K A181216 nonn
%O A181216 1,1
%A A181216 _R. H. Hardin_ Oct 10 2010