cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181236 T(n,k)=Number of (k*n)Xn binary matrices with all row sums equal and all column sums equal.

This page as a plain text file.
%I A181236 #5 Jul 22 2025 08:38:09
%S A181236 2,2,4,2,8,14,2,22,182,140,2,72,3362,49772,4322,2,254,69302,33235358,
%T A181236 113400002,434542,2,926,1513514,27896484332,5210265060002,
%U A181236 4027811102702,144109562,2,3434,34306274,26012734507190,298289608088472002
%N A181236 T(n,k)=Number of (k*n)Xn binary matrices with all row sums equal and all column sums equal.
%C A181236 Table starts
%C A181236 ............2...................2....................2..................2
%C A181236 ............4...................8...................22.................72
%C A181236 ...........14.................182.................3362..............69302
%C A181236 ..........140...............49772.............33235358........27896484332
%C A181236 .........4322...........113400002........5210265060002.298289608088472002
%C A181236 .......434542.......4027811102702.90698868503010138802...................
%C A181236 ....144109562.1237505791330809002........................................
%C A181236 .165431317452............................................................
%H A181236 R. H. Hardin, <a href="/A181236/b181236.txt">Table of n, a(n) for n=1..41</a>
%e A181236 All solutions for 6X2
%e A181236 ..0..0....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1....0..1
%e A181236 ..0..0....0..1....0..1....0..1....0..1....1..0....1..0....1..0....1..0....1..0
%e A181236 ..0..0....0..1....1..0....1..0....1..0....0..1....0..1....0..1....1..0....1..0
%e A181236 ..0..0....1..0....0..1....1..0....1..0....0..1....1..0....1..0....0..1....0..1
%e A181236 ..0..0....1..0....1..0....1..0....0..1....1..0....1..0....0..1....1..0....0..1
%e A181236 ..0..0....1..0....1..0....0..1....1..0....1..0....0..1....1..0....0..1....1..0
%e A181236 ...
%e A181236 ..0..1....1..0....1..0....1..0....1..0....1..0....1..0....1..0....1..0....1..0
%e A181236 ..1..0....0..1....0..1....0..1....0..1....0..1....0..1....1..0....1..0....1..0
%e A181236 ..1..0....0..1....0..1....0..1....1..0....1..0....1..0....0..1....0..1....0..1
%e A181236 ..1..0....0..1....1..0....1..0....0..1....0..1....1..0....0..1....0..1....1..0
%e A181236 ..0..1....1..0....1..0....0..1....1..0....0..1....0..1....1..0....0..1....0..1
%e A181236 ..0..1....1..0....0..1....1..0....0..1....1..0....0..1....0..1....1..0....0..1
%e A181236 ...
%e A181236 ..1..0....1..1
%e A181236 ..1..0....1..1
%e A181236 ..1..0....1..1
%e A181236 ..0..1....1..1
%e A181236 ..0..1....1..1
%e A181236 ..0..1....1..1
%Y A181236 Column 1 is A067209
%Y A181236 Row 2 is twice A112849
%K A181236 nonn,tabl
%O A181236 1,1
%A A181236 _R. H. Hardin_ Oct 10 2010