A181253 T(n,k)=Number of nXk binary matrices with no 2X2 block having four 1's.
2, 4, 4, 8, 15, 8, 16, 57, 57, 16, 32, 216, 417, 216, 32, 64, 819, 3032, 3032, 819, 64, 128, 3105, 22077, 42176, 22077, 3105, 128, 256, 11772, 160697, 587920, 587920, 160697, 11772, 256, 512, 44631, 1169792, 8191392, 15701273, 8191392, 1169792, 44631, 512
Offset: 1
Examples
Table starts ....2......4.........8...........16..............32.................64 ....4.....15........57..........216.............819...............3105 ....8.....57.......417.........3032...........22077.............160697 ...16....216......3032........42176..........587920............8191392 ...32....819.....22077.......587920........15701273..........419045269 ...64...3105....160697......8191392.......419045269........21418970801 ..128..11772...1169792....114142368.....11185495872......1095020802848 ..256..44631...8515337...1590466304....298561305103.....55979092539545 ..512.169209..61986457..22161786304...7969215344753...2861765993703849 .1024.641520.451223152.308805072256.212714316418464.146298965997241152
Links
- R. H. Hardin, Table of n, a(n) for n=1..721
Formula
Empirical column 1: a(n)=2*a(n-1)
Empirical column 2: a(n)=3*a(n-1)+3*a(n-2)
Empirical column 3: a(n)=6*a(n-1)+10*a(n-2)-5*a(n-3)
Empirical column 4: a(n)=10*a(n-1)+54*a(n-2)+16*a(n-3)-64*a(n-4)
Empirical column 5: a(n)=20*a(n-1)+188*a(n-2)-192*a(n-3)-1660*a(n-4)+2804*a(n-5)-507*a(n-6)-624*a(n-7)
Empirical column 6: a(n)=33*a(n-1)+908*a(n-2)+1687*a(n-3)-37947*a(n-4)-16572*a(n-5)+513993*a(n-6)-663729*a(n-7)-486540*a(n-8)+617409*a(n-9)+191835*a(n-10)-49140*a(n-11)
Empirical column 7: a(n)=68*a(n-1)+3106*a(n-2)-10300*a(n-3)-731184*a(n-4)+3930848*a(n-5)+47046600*a(n-6)-471525808*a(n-7)+1012118640*a(n-8)+2396096576*a(n-9)-9445394304*a(n-10)-4382776896*a(n-11)+29415041536*a(n-12)+8676097024*a(n-13)-36065068032*a(n-14)-14871987200*a(n-15)+10138337280*a(n-16)+2907136000*a(n-17)-1119682560*a(n-18)
Empirical column 8: a(n)=113*a(n-1)+13879*a(n-2)+91506*a(n-3)-13567062*a(n-4)-45766270*a(n-5)+5948333641*a(n-6)-25692714697*a(n-7)-932093986319*a(n-8)+9749317949468*a(n-9)+6293344318720*a(n-10)-400364584466276*a(n-11)+544975615003201*a(n-12)+8011657063605359*a(n-13)-12237642139437047*a(n-14)-98976024373360414*a(n-15)+87321080164809042*a(n-16)+743714645681446194*a(n-17)-21941742884172873*a(n-18)-2838216189512832023*a(n-19)-1559534908222727729*a(n-20)+4451110188283146640*a(n-21)+3110756142589939204*a(n-22)-3806251587192837456*a(n-23)-2258950594106495040*a(n-24)+1998716044109621760*a(n-25)+565195437997056000*a(n-26)-541032812384256000*a(n-27)+28184753405952000*a(n-28)+19493777571840000*a(n-29)