cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181253 T(n,k)=Number of nXk binary matrices with no 2X2 block having four 1's.

Original entry on oeis.org

2, 4, 4, 8, 15, 8, 16, 57, 57, 16, 32, 216, 417, 216, 32, 64, 819, 3032, 3032, 819, 64, 128, 3105, 22077, 42176, 22077, 3105, 128, 256, 11772, 160697, 587920, 587920, 160697, 11772, 256, 512, 44631, 1169792, 8191392, 15701273, 8191392, 1169792, 44631, 512
Offset: 1

Views

Author

R. H. Hardin, Oct 10 2010

Keywords

Examples

			Table starts
....2......4.........8...........16..............32.................64
....4.....15........57..........216.............819...............3105
....8.....57.......417.........3032...........22077.............160697
...16....216......3032........42176..........587920............8191392
...32....819.....22077.......587920........15701273..........419045269
...64...3105....160697......8191392.......419045269........21418970801
..128..11772...1169792....114142368.....11185495872......1095020802848
..256..44631...8515337...1590466304....298561305103.....55979092539545
..512.169209..61986457..22161786304...7969215344753...2861765993703849
.1024.641520.451223152.308805072256.212714316418464.146298965997241152
		

Crossrefs

Diagonal is A139810.
Column 2 is A125145.

Formula

Empirical column 1: a(n)=2*a(n-1)
Empirical column 2: a(n)=3*a(n-1)+3*a(n-2)
Empirical column 3: a(n)=6*a(n-1)+10*a(n-2)-5*a(n-3)
Empirical column 4: a(n)=10*a(n-1)+54*a(n-2)+16*a(n-3)-64*a(n-4)
Empirical column 5: a(n)=20*a(n-1)+188*a(n-2)-192*a(n-3)-1660*a(n-4)+2804*a(n-5)-507*a(n-6)-624*a(n-7)
Empirical column 6: a(n)=33*a(n-1)+908*a(n-2)+1687*a(n-3)-37947*a(n-4)-16572*a(n-5)+513993*a(n-6)-663729*a(n-7)-486540*a(n-8)+617409*a(n-9)+191835*a(n-10)-49140*a(n-11)
Empirical column 7: a(n)=68*a(n-1)+3106*a(n-2)-10300*a(n-3)-731184*a(n-4)+3930848*a(n-5)+47046600*a(n-6)-471525808*a(n-7)+1012118640*a(n-8)+2396096576*a(n-9)-9445394304*a(n-10)-4382776896*a(n-11)+29415041536*a(n-12)+8676097024*a(n-13)-36065068032*a(n-14)-14871987200*a(n-15)+10138337280*a(n-16)+2907136000*a(n-17)-1119682560*a(n-18)
Empirical column 8: a(n)=113*a(n-1)+13879*a(n-2)+91506*a(n-3)-13567062*a(n-4)-45766270*a(n-5)+5948333641*a(n-6)-25692714697*a(n-7)-932093986319*a(n-8)+9749317949468*a(n-9)+6293344318720*a(n-10)-400364584466276*a(n-11)+544975615003201*a(n-12)+8011657063605359*a(n-13)-12237642139437047*a(n-14)-98976024373360414*a(n-15)+87321080164809042*a(n-16)+743714645681446194*a(n-17)-21941742884172873*a(n-18)-2838216189512832023*a(n-19)-1559534908222727729*a(n-20)+4451110188283146640*a(n-21)+3110756142589939204*a(n-22)-3806251587192837456*a(n-23)-2258950594106495040*a(n-24)+1998716044109621760*a(n-25)+565195437997056000*a(n-26)-541032812384256000*a(n-27)+28184753405952000*a(n-28)+19493777571840000*a(n-29)