A181293 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k 0's (0<=k<=n) A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
1, 0, 2, 1, 2, 4, 2, 6, 8, 8, 4, 14, 24, 24, 16, 8, 32, 64, 80, 64, 32, 16, 72, 164, 240, 240, 160, 64, 32, 160, 408, 680, 800, 672, 384, 128, 64, 352, 992, 1848, 2480, 2464, 1792, 896, 256, 128, 768, 2368, 4864, 7296, 8288, 7168, 4608, 2048, 512, 256, 1664, 5568
Offset: 0
Examples
T(2,0)=1, T(2,1)=2, T(2,2)=4 because the 2-compositions of 2, written as (top row/bottom row), are (1/1), (0/2), (2/0), (1,0/0,1), (0,1/1,0), (1,1/0,0), (0,0/1,1). Triangle starts: 1; 0,2; 1,2,4; 2,6,8,8; 4,14,24,24,16; ...
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Programs
-
Maple
G := (1-z)^2/(1-2*z-2*t*z+2*t*z^2): Gser := simplify(series(G, z = 0, 14)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
Formula
G.f.: G(t,z) = (1-z)^2/(1-2*z-2*t*z+2*t*z^2).
G.f. of column k is 2^k*z^k*(1-z)^{k+2}/(1-2*z)^{k+1} (we have a Riordan array).
Comments