A181297 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k even entries (0<=k<=n).
1, 0, 2, 1, 0, 6, 0, 8, 0, 16, 3, 0, 35, 0, 44, 0, 28, 0, 132, 0, 120, 8, 0, 160, 0, 460, 0, 328, 0, 92, 0, 748, 0, 1528, 0, 896, 21, 0, 642, 0, 3117, 0, 4916, 0, 2448, 0, 290, 0, 3552, 0, 12062, 0, 15456, 0, 6688, 55, 0, 2380, 0, 17119, 0, 44318, 0, 47760, 0, 18272, 0, 888, 0
Offset: 0
Examples
T(2,2) = 6 because we have (0 / 2), (2 / 0), (1,0 / 0,1), (0,1 / 1,0), (1,1 / 0,0), (0,0 / 1,1) (the 2-compositions are written as (top row / bottom row)). Triangle starts: 1; 0,2; 1,0,6; 0,8,0,16; 3,0,35,0,44;
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Programs
-
Maple
G := (1-z^2)^2/(1-3*z^2+z^4-2*s*z-2*s^2*z^2+s^2*z^4): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 11 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 11 do seq(coeff(P[n], s, k), k = 0 .. n) end do; # yields sequence in triangular form
Formula
G.f.: G(t,z) = (1-z^2)^2/(1-3*z^2+z^4-2*s*z-2*s^2*z^2+s^2*z^4).
The g.f. H(t,s,z), where z marks the size of the 2-composition and t (s) marks the number of odd (even) entries, is H=1/(1-h), where h=z(t+sz)(2s+tz-sz^2)/(1-z^2)^2.
Sum_{k=0..n} T(n,k) = A003480(n).
T(2*n-1,0) = 0.
T(2*n,0) = A000045(2*n) (Fibonacci numbers).
T(n,k) = 0 if n and k have opposite parities.
T(n,n) = A002605(n+1).
Sum_{k=0..n} k*T(n,k) = A181298(n).
Comments