cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181298 The number of even entries in all the 2-compositions of n. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

0, 2, 12, 56, 246, 1024, 4128, 16248, 62832, 239640, 903944, 3379064, 12536552, 46215672, 169443592, 618303864, 2246863624, 8135066488, 29358346888, 105642047864, 379143054472, 1357496762744, 4849952390792, 17293404551544
Offset: 0

Views

Author

Emeric Deutsch, Oct 12 2010

Keywords

Comments

a(n)=Sum(k*A181297(n,k),k=0..n).

Examples

			a(2)=12 because in the 2-compositions of 2, namely (1/1),(0/2),(2/0),(1,0/0,1),(0,1/1,0),(1,1/0,0), and (0,0/1,1), we have 0+2+2+2+2+2+2=12 odd entries (the 2-compositions are written as (top row/bottom row)).
		

References

  • G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.

Crossrefs

Programs

  • Maple
    g := 2*z*(1-z)^2*(1+z-z^2)/((1+z)*(1-4*z+2*z^2)^2): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 25);

Formula

G.f. = 2z(1-z)^2*(1+z-z^2)/[(1+z)(1-4z+2z^2)^2].
a(n) = 2*A181337(n). - R. J. Mathar, Jul 26 2022