A181298 The number of even entries in all the 2-compositions of n. A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.
0, 2, 12, 56, 246, 1024, 4128, 16248, 62832, 239640, 903944, 3379064, 12536552, 46215672, 169443592, 618303864, 2246863624, 8135066488, 29358346888, 105642047864, 379143054472, 1357496762744, 4849952390792, 17293404551544
Offset: 0
Examples
a(2)=12 because in the 2-compositions of 2, namely (1/1),(0/2),(2/0),(1,0/0,1),(0,1/1,0),(1,1/0,0), and (0,0/1,1), we have 0+2+2+2+2+2+2=12 odd entries (the 2-compositions are written as (top row/bottom row)).
References
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European Journal of Combinatorics, 28, 2007, 1724-1741.
Links
- Index entries for linear recurrences with constant coefficients, signature (7,-12,-4,12,-4).
Programs
-
Maple
g := 2*z*(1-z)^2*(1+z-z^2)/((1+z)*(1-4*z+2*z^2)^2): gser := series(g, z = 0, 30): seq(coeff(gser, z, n), n = 0 .. 25);
Formula
G.f. = 2z(1-z)^2*(1+z-z^2)/[(1+z)(1-4z+2z^2)^2].
a(n) = 2*A181337(n). - R. J. Mathar, Jul 26 2022
Comments