A181302 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns with distinct entries (0<=k<=n).
1, 0, 2, 1, 2, 4, 0, 8, 8, 8, 2, 8, 32, 24, 16, 0, 24, 56, 104, 64, 32, 4, 24, 152, 248, 304, 160, 64, 0, 64, 248, 712, 896, 832, 384, 128, 8, 64, 568, 1496, 2800, 2880, 2176, 896, 256, 0, 160, 888, 3560, 6976, 9824, 8576, 5504, 2048, 512, 16, 160, 1848, 6904, 17904
Offset: 0
Examples
T(2,1) = 2 because we have (0/2) and (2/0) (the 2-compositions are written as (top row/bottom row)). Triangle starts: 1; 0,2; 1,2,4; 0,8,8,8; 2,8,32,24,16;
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Programs
-
Maple
G := (1+z)*(1-z)^2/((1-z)*(1-2*z^2)-2*t*z): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form
Comments