A181305 Number of increasing columns in all 2-compositions of n.
0, 1, 5, 24, 104, 432, 1736, 6820, 26332, 100308, 377996, 1411844, 5234428, 19285252, 70670972, 257766212, 936336572, 3388962884, 12226547132, 43983439684, 157814634684, 564917186372, 2017873643708, 7193745818436
Offset: 0
Examples
a(1) = 1 because in the 2-compositions of 1, namely (0/1) and (1/0) we have only one increasing column (the 2-compositions are written as (top row / bottom row)). a(2) = 5 because in (0/2), (1/1), (2,0), (1,0/0,1), (0,1/1,0), (1,1/0,0), and (0,0/1,1) (the 2-compositions are written as (top row/bottom row)) we have 0+1+0+1+1+2+0 = 5 odd entries.
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
- Index entries for linear recurrences with constant coefficients, signature (7,-12,-4,12,-4).
Programs
-
Maple
g := z*(1-z)^2/((1+z)*(1-4*z+2*z^2)^2): gser := series(g, z = 0, 30): seq(coeff(gser, z, k), k = 0 .. 27);
Formula
G.f.: z*(1-z)^2/((1+z)*(1-4*z+2*z^2)^2).
a(n) = Sum_{k=0..n} k*A181304(n,k).
Extensions
Edited by N. J. A. Sloane, Oct 15 2010
Comments