A181307 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k columns with only nonzero entries (0<=k<=floor(n/2)).
1, 2, 6, 1, 18, 6, 54, 27, 1, 162, 108, 10, 486, 405, 64, 1, 1458, 1458, 334, 14, 4374, 5103, 1549, 117, 1, 13122, 17496, 6652, 760, 18, 39366, 59049, 27064, 4238, 186, 1, 118098, 196830, 105796, 21324, 1450, 22, 354294, 649539, 401041, 99646, 9480, 271
Offset: 0
Examples
T(2,1) = 1 because we have (1/1) (the 2-compositions are written as (top row / bottom row)). Triangle starts: 1; 2; 6,1; 18,6; 54,27,1; 162,108,10;
Links
- G. Castiglione, A. Frosini, E. Munarini, A. Restivo and S. Rinaldi, Combinatorial aspects of L-convex polyominoes, European J. Combin. 28 (2007), no. 6, 1724-1741.
Programs
-
Maple
G := (1-z)^2/(1-4*z+3*z^2-t*z^2): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 12 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 12 do seq(coeff(P[n], t, k), k = 0 .. floor((1/2)*n)) end do; # yields sequence in triangular form
Comments