This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181313 #23 Aug 09 2024 15:11:29 %S A181313 1,2,2,3,2,28,1,13,1,2,1,123,1,6,1,2039,2,2,6,262111,1,35,1,1,3, %T A181313 536870655,1,2,1,15,1,3,3,1,1,1,2,140737488347135,1,1,1,1,1,127,1,7,7, %U A181313 1,5,2,2,75557863725914321321983,1,1,2,5,1,2047,2,2,5,1,31,6,1,1,3,2,2 %N A181313 Continued fraction expansion of the Fibonacci binary number. %C A181313 Essentially the same as A125600. - _R. J. Mathar_, Oct 14 2010 %H A181313 Charles R Greathouse IV, <a href="/A181313/b181313.txt">Table of n, a(n) for n = 0..638</a> %H A181313 D. Bailey, J. Borwein, R. Crandall, and C. Pomerance, <a href="https://doi.org/10.5802/jtnb.457">On the binary expansions of algebraic numbers</a>, Journal de Théorie des Nombres de Bordeaux 16 (2004), 487-518. %H A181313 J. H. Loxton and A. van der Poorten, <a href="http://dx.doi.org/10.1017/S0004972700022978">Arithmetic properties of certain functions in several variables III</a>, Bulletin of the Australian Mathematical Society, Volume 16, Issue 01, February 1977, pp 15-47. %H A181313 J. Shallit and A. van der Poorten, <a href="http://dx.doi.org/10.4153/CJM-1993-058-5">A specialised continued fraction</a>, Can. J. Math. 45 (1993), 1067-79. %H A181313 Alf van der Poorten, <a href="http://www.maths.mq.edu.au/~alf/_Thrall.pdf">In thrall to Fibonacci</a> %o A181313 (PARI) contfrac(suminf(n=1,2.^-fibonacci(n))) %Y A181313 Cf. A084119 (decimal expansion), A125600 (essentially the same), A006518. %K A181313 cofr,nonn %O A181313 0,2 %A A181313 _Charles R Greathouse IV_, Oct 12 2010 %E A181313 Offset changed by _Andrew Howroyd_, Aug 09 2024