cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181330 Triangle read by rows: T(n,k) is the number of 2-compositions of n having k 0's in the top row A 2-composition of n is a nonnegative matrix with two rows, such that each column has at least one nonzero entry and whose entries sum up to n.

Original entry on oeis.org

1, 1, 1, 3, 3, 1, 8, 10, 5, 1, 21, 32, 21, 7, 1, 55, 99, 80, 36, 9, 1, 144, 299, 286, 160, 55, 11, 1, 377, 887, 978, 650, 280, 78, 13, 1, 987, 2595, 3236, 2482, 1275, 448, 105, 15, 1, 2584, 7508, 10438, 9054, 5377, 2261, 672, 136, 17, 1, 6765, 21526, 32991, 31882
Offset: 0

Views

Author

Emeric Deutsch, Oct 13 2010

Keywords

Comments

The sum of entries in row n is A003480(n).
T(n,0) = A000045(2n) (n>=1), Fibonacci numbers.
T(n,1) = A038731(n-1) (n>=1).
Sum(k*T(n,k), k>=0) = A181331.
For the statistic "number of nonzero entries in the top row" see A181332.

Examples

			T(2,1)=3 because we have (0/2), (1,0/0,1), and (0,1/1,0) (the 2-compositions are written as (top row / bottom row)).
Triangle starts:
1;
1,1;
3,3,1;
8,10,5,1;
21,32,21,7,1;
55,99,80,36,9,1;
		

Crossrefs

Programs

  • Maple
    G := (1-z)^2/(1-3*z+z^2-t*z*(1-z)): Gser := simplify(series(G, z = 0, 15)): for n from 0 to 10 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 0 to 10 do seq(coeff(P[n], t, k), k = 0 .. n) end do; # yields sequence in triangular form

Formula

G.f.: G(t,x) = (1-x)^2/(1-3*x+x^2-t*x(1-x)).
The g.f. of column k is x^k*(1-x)^(k+2)/(1-3*x+x^2)^(k+1) (we have a Riordan array).
T(n,k) = 3*T(n-1,k) +T(n-1,k-1) -T(n-2,k) -T(n-2,k-1), with T(0,0)=T(1,0)=T(1,1)=T(2,2)=1, T(2,0)=T(2,1)=3, T(n,k)=0 if k<0 or if k>n. - Philippe Deléham, Nov 26 2013