This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181373 #31 Oct 08 2023 04:43:19 %S A181373 0,2,0,100,106,120,196,102,542,400,181,21,216,372,10446,127,10086,616, %T A181373 399,1703,196,2009,118,12350,516,416,13244,884,15462,15146,106, %U A181373 1006942,10762,10814,11634,5808,12408,576,30076,4996,25290,1015092,1108,26874,24036,5994 %N A181373 Least m>0 such that prime(n) divides S(m)=A007908(m)=123...m and all numbers obtained by cyclic permutations of its digits; 0 if no such m exists. %C A181373 The first three primes 2, 3 and 5 are particular cases, cf. examples. It happens that all other primes < 47 are in A180346 (and therefore have a(n) < 1000). P=37 is the only one among them with a(n) < 100 (but m=123 is another possibility for this prime). %C A181373 Conjecture: a(n) > 0 for n <> 1 and n <> 3. - _Chai Wah Wu_, Oct 06 2023 %C A181373 Least m>0 such that prime(n) divides both A007908(m) and 10^A058183(m)-1; or 0 if no such m exists. - _Chai Wah Wu_, Oct 07 2023 %H A181373 Chai Wah Wu, <a href="/A181373/b181373.txt">Table of n, a(n) for n = 1..4042</a> %F A181373 A007908( A181373(n) ) = 0 (mod A000040(n)). %e A181373 For prime(1)=2, no such m can exist (consider e.g. the initial 1 is permuted to the end), therefore a(1)=0. %e A181373 For prime(2)=3, we have S(2)=12 and the permutation 21 both divisible by 3, thus a(2)=2. (There are many m for which the divisibility property is satisfied; it is equivalent to 1+...+m=0 (mod 3), or equivalently the sum of all these digits is divisible by 3. Therefore, the permutations do not need to be checked.) %e A181373 For prime(3)=5, similar to prime(1)=2, no such m can exist. %e A181373 For prime(4)=7, it turns out the m=100 is the least possibility, i.e., 123...99100 and the permutations 234...991001, 345...9910012, ... 100123...99, (00)123...991, (0)123...9910 are all divisible by 7. %o A181373 (PARI) A181373(p,LIM=999,MIN=1)={ p=prime(p); p!=2 & p!=5 & for(n=MIN,LIM, my(S=eval(concat(vector(n,i,Str(i)))),L=#Str(S)-1); S%p & next; for(k=1,L, (S=[1,10^L]*divrem(S,10)) % p & next(2)); return(n)) } /* highly unoptimized code, for illustration purpose */ %o A181373 (Python) %o A181373 from sympy import prime %o A181373 def A181373(n): %o A181373 s, p, l = '', prime(n), 0 %o A181373 for m in range(1,10**6): %o A181373 u = str(m) %o A181373 s += u %o A181373 l += len(u) %o A181373 t = s %o A181373 if not int(t) % p: %o A181373 for i in range(l-1): %o A181373 t = t[1:]+t[0] %o A181373 if int(t) % p: %o A181373 break %o A181373 else: %o A181373 return m %o A181373 else: %o A181373 return 'search limit reached.' # _Chai Wah Wu_, Nov 12 2015 %o A181373 (Python) %o A181373 from itertools import count %o A181373 from sympy import prime %o A181373 def A181373(n): %o A181373 if n == 1 or n == 3: return 0 %o A181373 p, c, q, a, b = prime(n), 0, 1, 10, 10 %o A181373 for m in count(1): %o A181373 if m >= b: %o A181373 a = 10*a%p %o A181373 b *= 10 %o A181373 c = (c*a + m) % p %o A181373 q = q*a % p %o A181373 if not (c or (q-1)%p): %o A181373 return m # _Chai Wah Wu_, Oct 07 2023 %Y A181373 Cf. A000040, A007908, A058183, A180346 (see references there), A181373. %K A181373 nonn,base %O A181373 1,2 %A A181373 _M. F. Hasler_ and _Marco RipĂ _, Jan 27 2011 %E A181373 a(15)-a(31) from _Chai Wah Wu_, Nov 12 2015 %E A181373 a(32)-a(46) from _Chai Wah Wu_, Oct 06 2023