A181386 Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members.
1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 6, 4, 1, 1, 3, 1, 1, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 15, 1, 4, 1, 1, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 15, 45, 15, 1, 10, 1, 1, 1, 1, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 21, 105, 105, 1, 20
Offset: 1
Examples
r=1, C(1,n,m) is 1 1, 1 1, 2, 1 1, 3, 3, 1 1, 4, 6, 4, 1 1, 5, 10, 10, 5, 1 r=2, C(2,n,m) is 1 1 1, 1 1, 3 1, 6, 3 1, 10, 15 r=3, C(3,n,m) is 1 1 1 1, 1 1, 4 1, 10
Links
Programs
-
Mathematica
Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]
Formula
C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).
Comments