cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181386 Tetrahedron of terms C(r,n,m) representing the number of ways of choosing m disjoint subsets of r members from an original set of n members.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 3, 3, 1, 1, 1, 1, 1, 1, 4, 6, 4, 1, 1, 3, 1, 1, 1, 1, 5, 10, 10, 5, 1, 1, 6, 3, 1, 1, 1, 1, 1, 1, 6, 15, 20, 15, 6, 1, 1, 10, 15, 1, 4, 1, 1, 1, 1, 1, 7, 21, 35, 35, 21, 7, 1, 1, 15, 45, 15, 1, 10, 1, 1, 1, 1, 1, 1, 1, 8, 28, 56, 70, 56, 28, 8, 1, 1, 21, 105, 105, 1, 20
Offset: 1

Views

Author

Frank M Jackson, Oct 16 2010

Keywords

Comments

The start index for r is 1 but the start index for m and n is 0. For each value of r, the triangle T_r(n,m) has row n containing 1 + floor(n/r) terms.
From Frank M Jackson, Nov 20 2010: (Start)
C(r,mr,m) = C(r,mr-1,m-1).
C(1,m,m) = A000012, C(2,2m,m) = A001147,
C(3,3m,m), ..., C(10,10m,m) = A025035, ..., A025042.
C(2,26,10) = 150738274937250 and represents the number of possible plugboard settings for a WWII German Enigma Enciphering Machine.
C(r,2r,2) = A001700, C(r,3r,3) = A060542, C(r,4r,4) = A082368.
C(r,n,m) = C(r,mr-1,m-1)*binomial(n,rm),
and applied recursively gives the identity
C(r,n,m) = Binomial(n,r*m) * Product_{p=1..m} Binomial(r*(m-p+1)-1,r-1).
(End)
C(2,26,10) = A266365(10), where 26 is the size of the alphabet. - Jonathan Sondow, Dec 29 2015

Examples

			r=1, C(1,n,m) is
  1
  1, 1
  1, 2,  1
  1, 3,  3,  1
  1, 4,  6,  4, 1
  1, 5, 10, 10, 5, 1
r=2, C(2,n,m) is
  1
  1
  1,  1
  1,  3
  1,  6,  3
  1, 10, 15
r=3, C(3,n,m) is
  1
  1
  1
  1,  1
  1,  4
  1, 10
		

Crossrefs

C(1,n,m) = T_1(n,m) = A007318, C(2,n,m) = T_2(n,m) = A100861, and C(2,26,m) = A266365.

Programs

  • Mathematica
    Flatten[Table[{n!/((n-r*m)!*m!*r!^m)}, {r, 1, 50}, {n, 0, 50}, {m, 0, Floor[n/r]}]]

Formula

C(r,n,m) = n!/((n-r*m)!*m!*(r!)^m).