cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181410 G.f.: exp( Sum_{n>=1} A181411(n)*x^n/n ) where A181411(n) = Sum_{k=0..n} C(n,k)*sigma(n+k).

This page as a plain text file.
%I A181410 #2 Mar 30 2012 18:37:22
%S A181410 1,4,17,65,234,804,2664,8571,26908,82721,249758,742178,2174623,
%T A181410 6291982,17998815,50957814,142913510,397339309,1095887091,3000130003,
%U A181410 8156568197,22032636494,59155443318,157925193036,419353166885,1107924552070
%N A181410 G.f.: exp( Sum_{n>=1} A181411(n)*x^n/n ) where A181411(n) = Sum_{k=0..n} C(n,k)*sigma(n+k).
%e A181410 G.f.: A(x) = 1 + 4*x + 17*x^2 + 65*x^3 + 234*x^4 + 804*x^5 +...
%e A181410 The logarithm of the g.f. begins:
%e A181410 log(A(x)) = 4*x + 18*x^2/2 + 55*x^3/3 + 150*x^4/4 + 379*x^5/5 + 915*x^6/6 + 2146*x^7/7 +...+ A181411(n)*x^n/n +...
%o A181410 (PARI) {a(n)=polcoeff(exp(sum(m=1,n,sum(k=0,m,binomial(m,k)*sigma(m+k))*x^m/m)+x*O(x^n)),n)}
%Y A181410 Cf. A181411.
%K A181410 nonn
%O A181410 0,2
%A A181410 _Paul D. Hanna_, Oct 19 2010