cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181435 First column in matrix inverse of a mixed convolution of A052906.

Original entry on oeis.org

1, -4, -1, 0, -1, 1, -1, 0, 0, 1, -1, 0, -1, 1, 1, 0, -1, 0, -1, 0, 1, 1, -1, 0, 0, 1, 0, 0, -1, -1, -1, 0, 1, 1, 1, 0, -1, 1, 1, 0, -1, -1, -1, 0, 0, 1, -1, 0, 0, 0, 1, 0, -1, 0, 1, 0, 1, 1, -1, 0, -1, 1, 0, 0, 1, -1, -1, 0, 1, -1, -1, 0, -1, 1, 0, 0, 1
Offset: 1

Views

Author

Mats Granvik, Oct 20 2010

Keywords

Comments

It appears that except for the second term, the sequence is identical to the Möbius function.

Crossrefs

Programs

  • Maple
    b := proc(n)
        option remember;
        local c;
        c := 3;
        if n <= 3 then
            op(n,[1,c,c^2]) ;
        else
            c*procname(n-1)+procname(n-2) ;
        end if;
    end proc:
    A := proc(n,k)
        if n >= k then
            b(n-k+1) ;
        else
            0 ;
        end if;
    end proc:
    B := proc(n,k)
        if modp(n,k) = 0 then
            1;
        else
            0;
        end if;
    end proc:
    AB := proc(n,k)
        option remember;
        add( A(n,j)*B(j,k),j=1..n) ;
    end proc:
    ABinv := proc(n,k)
        option remember;
        if k > n then
            0;
        elif k = n then
            1;
        else
            -add( AB(n,j)*procname(j,k),j=k..n-1) ;
        end if;
    end proc:
    A181435 := proc(n)
        ABinv(n,1) ;
    end proc:
    for n from 1 do
        printf("%d %d\n",n,ABinv(n,1)) ;
    end do: # R. J. Mathar, Oct 06 2017
  • Mathematica
    Clear[t, n, k, nn, b, A, c]; nn = 77; c = 3; b[0] = 1; b[1] = 1; b[n_] := b[n] = c*b[n - 1] + b[n - 2]; t[n_, 1] = If[n >= 1, b[n], 0]; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, k - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0]; MatrixForm[A = Table[Table[t[n, k], {k, 1, nn}], {n, 1, nn}]]; Inverse[A][[All, 1]] (* Mats Granvik, Sep 16 2017 *)

Formula

From Mats Granvik, Sep 16 2017: (Start)
a(n) as the matrix inverse of a mixed convolution: Let c = 3 and let the sequence b be defined by the recurrence: b(1) = 1, b(2) = c, b(3) = c^2; for n >= 4, b(n) = c*b(n-1) + b(n-2), so b(n) = A052906(n-1), and let the lower triangular matrix A be: If n >= k then A(n,k) = b(n - k + 1) else A(n,k) = 0, and let B be the lower triangular matrix A051731. Then the matrix inverse (A.B)^-1 will have a(n) as its first column.
The matrix product T = A.B can be defined as follows: Let c = 3 and the sequence b be defined by the recurrence b(0) = 1, b(1) = 1; for b >= 2, b(n) = c*b(n - 1) + b(n - 2); and let T be the lower triangular matrix defined by the recurrence: T(n, 1) = If n >= 1 then T(n, 1) = b(n) else T(n, 1) = 0; for k >= 2, T(n, k) = If n >= k then (Sum_{i=1..k-1} T(n - i, k - 1) - T(n - i, k)) else 0. (Then the matrix inverse of T will have a(n) as its first column.)
(End)