cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181480 a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=8.

This page as a plain text file.
%I A181480 #16 Aug 06 2025 08:45:11
%S A181480 1,8,64,344,1744,7400,29632,106808,366088,1168008,3570240,10347864,
%T A181480 28915056,77493096,201249216,505130808,1233655332,2927916264,
%U A181480 6784208704,15338678264,33950726992,73557910088,156378379456,326236930136,669101503096,1349416997864
%N A181480 a(n) has generating function 1/((1-x)^k*(1-x^2)^(k*(k-1)/2)) for k=8.
%C A181480 a(n-1,k) is conjectured to also be the count of monomials (or terms) in the Schur polynomials of k variables and degree n, summed over all partitions of n in at most k parts (zero-padded to length k).
%H A181480 Alois P. Heinz, <a href="/A181480/b181480.txt">Table of n, a(n) for n = 0..1000</a>
%H A181480 Wikipedia, <a href="https://en.wikipedia.org/wiki/Schur_polynomial">Schur Polynomial</a>
%t A181480 CoefficientList[Series[1/(1-x)^8/(1-x^2)^28,{x,0,25}],x]
%Y A181480 For k=2 (two variables): A002620, k=3: A038163, k=4: A054498, k=5: A181477, k=6: A181478, k=7: A181479.
%Y A181480 Column k=8 of A210391. - _Alois P. Heinz_, Mar 22 2012
%K A181480 nonn,easy
%O A181480 0,2
%A A181480 _Wouter Meeussen_, Oct 24 2010