A181487
Numbers k such that Sum_{d|k, d k.
12, 18, 20, 30, 42, 48, 56, 66, 70, 72, 78, 80, 84, 88, 90, 102, 104, 108, 114, 120, 138, 150, 162, 174, 180, 186, 192, 196, 200, 210, 220, 222, 246, 252, 258, 260, 264, 270, 272, 280, 282, 288, 294, 300, 304, 308, 312, 318, 320, 330, 336, 340, 354, 364, 366
Offset: 1
Keywords
References
- Elena Deza, Perfect and Amicable Numbers, World Scientific, 2023, pp. 325-327.
Links
- Donovan Johnson, Table of n, a(n) for n = 1..10000
- Jean-Marie De Koninck and Aleksandar Ivić, On a sum of divisors problem, Publications de l'Institut Mathématique (Beograd), New Series, Vol. 64 (78) (1998), pp. 9-20.
- Gérard Villemin, Nombres S-PARFAITS ou Nombres de Granville, NOMBRES - Curiosités, théorie et usages, 2019 (in French).
- Wikipedia, Granville number.
Programs
-
Mathematica
seq[kmax_] := Module[{s = {1}, a = {}, sum}, Do[sum = Total[Select[Divisors[k], MemberQ[s, #] &]]; If[sum <= k, AppendTo[s, k], AppendTo[a, k]], {k, 2, kmax}]; a]; seq[400] (* Amiram Eldar, Aug 11 2023 *)
-
PARI
A181487(Nmax) = { my(C=0); for(n=2,Nmax, sumdiv(n,d,!bittest(C,d)*d)>2*n & !print1(n", ") & C+=1<
Comments