This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181527 #31 Jul 05 2024 14:12:40 %S A181527 1,4,13,38,103,264,649,1546,3595,8204,18445,40974,90127,196624,426001, %T A181527 917522,1966099,4194324,8912917,18874390,39845911,83886104,176160793, %U A181527 369098778,771751963,1610612764,3355443229,6979321886,14495514655,30064771104,62277025825 %N A181527 Binomial transform of A113127; (1, 1, 3, 7, 15, 31, ...) convolved with (1, 3, 7, 15, 31, 63, ...). %C A181527 A181527 = Partial sums of (A002064 Cullen numbers: n*2^n+1). - _Vladimir Joseph Stephan Orlovsky_, Jul 09 2011 %C A181527 Form a triangle with T(1,1) = n, T(2,1) = T(2,2) = n-1, T(3,1) = T(3,3) = n-2, ..., T(n,1) = T(n,n) = 1. The interior members are T(i,j) = T(i-1,j-1) + T(i-1,j). The sum of all members for a triangle of size n is a(n-1). Example for n = 5: row(1) = 5; row(2) = 4, 4; row(3) = 3, 8, 3; row(4) = 2, 11, 11, 2; row(5) = 1, 13, 22, 13, 1. The sum of all members is 103 = a(4). - _J. M. Bergot_, Oct 16 2012 %H A181527 <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (6,-13,12,-4). %F A181527 Binomial transform of A113127; (1, 3, 7, 15, 31, ...) convolved with (1, 1, 3, 7, 15, 31, ...). %F A181527 From _R. J. Mathar_, Oct 30 2010: (Start) %F A181527 a(n) = 3+ n + 2^(n+1)*(n-1) = 6*a(n-1) - 13*a(n-2) + 12*a(n-3) - 4*a(n-4). %F A181527 G.f.: ( 1-2*x+2*x^2 ) / ( (2*x-1)^2*(x-1)^2 ). (End) %e A181527 a(4) = 103 = (1, 1, 3, 7, 15) dot (31, 15, 7, 3, 1) = (31 + 15 + 21, + 21 + 15) %e A181527 a(3) = 38 = (1, 3, 3, 1) dot (1, 3, 6, 10) = (1 + 9 + 18 + 10). %t A181527 Accumulate[Table[n*2^n + 1, {n, 0, 60}]] (* _Vladimir Joseph Stephan Orlovsky_, Jul 09 2011 *) %t A181527 LinearRecurrence[{6,-13,12,-4},{1,4,13,38},40] (* _Harvey P. Dale_, Apr 14 2016 *) %Y A181527 Cf. A002064, A113127. %K A181527 nonn,easy %O A181527 0,2 %A A181527 _Gary W. Adamson_, Oct 26 2010