A181552 T(n,k) = gcd(n,k) A181549(k), triangle read by rows.
1, 1, 6, 1, 3, 12, 1, 6, 4, 20, 1, 3, 4, 5, 30, 1, 6, 12, 10, 6, 72, 1, 3, 4, 5, 6, 12, 56, 1, 6, 4, 20, 6, 24, 8, 80, 1, 3, 12, 5, 6, 36, 8, 10, 99, 1, 6, 4, 10, 30, 24, 8, 20, 11, 180, 1, 3, 4, 5, 6, 12, 8, 10, 11, 18, 132, 1, 6, 12, 20, 6, 72, 8, 40, 33, 36, 12, 240
Offset: 1
Examples
1, 1,6, 1,3,12, 1,6,.4,20, 1,3,.4,.5,30, 1,6,12,10,.6,72, 1,3,.4,.5,.6,12,56, 1,6,.4,20,.6,24,.8,80,
Links
- Peter Luschny, Sequences related to Euler's totient function.
Programs
-
Maple
A181552 := (n,k) -> igcd(n,k)*A181549(k);
-
Mathematica
mu2[1] = 1; mu2[n_] := Sum[Boole[Divisible[n, d^2]]*MoebiusMu[n/d^2]*MoebiusMu[n/d], {d, Divisors[n]}]; A181549[n_] := Sum[k*mu2[n/k], {k, Divisors[n]}]; t[n_, k_] := GCD[n, k]*A181549[k]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
Comments