cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A181549 a(n) = Sum_{k|n} k*mu_2(n/k).

Original entry on oeis.org

0, 1, 3, 4, 5, 6, 12, 8, 10, 11, 18, 12, 20, 14, 24, 24, 20, 18, 33, 20, 30, 32, 36, 24, 40, 29, 42, 33, 40, 30, 72, 32, 40, 48, 54, 48, 55, 38, 60, 56, 60, 42, 96, 44, 60, 66, 72, 48, 80, 55, 87, 72, 70, 54, 99, 72, 80, 80, 90, 60
Offset: 0

Views

Author

Peter Luschny, Oct 30 2010

Keywords

Comments

Sum_{k|n} k*mu(n/k) is Euler's phi function. In A181549 mu(n) is replaced by the Moebius function of order 2, mu_2(n), A189021(n).

Crossrefs

Programs

  • Maple
    A181549 := proc(n) local k; add(k*A189021(n/k),k=divisors(n)) end;
  • Mathematica
    mu2[1] = 1; mu2[n_] := Sum[Boole[Divisible[n, d^2]]*MoebiusMu[n/d^2]*MoebiusMu[n/d], {d, Divisors[n]}]; a[n_] := Sum[k*mu2[n/k], {k, Divisors[n]}]; Table[a[n], {n, 0, 59}] (* Jean-François Alcover, Feb 05 2014 *)
    f[p_, e_] := p^e + p^(e - 1) - If[e > 1, p^(e - 2), 0]; a[0] = 0; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100, 0] (* Amiram Eldar, Nov 30 2022 *)
  • PARI
    a(n) = if(n == 0, 0, my(f = factor(n)); prod(i = 1, #f~, f[i,1]^f[i,2] + f[i,1]^(f[i,2]-1) - if(f[i,2] > 1, f[i,1]^(f[i,2]-2), 0))); \\ Amiram Eldar, Nov 30 2022

Formula

From Amiram Eldar, Nov 30 2022: (Start)
Multiplicative with a(p)= p + 1, and a(p^e) = p^e + p^(e-1) - p^(e-2) if e > 1.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (1/2) * Product_{p prime} (1 + 1/p^2 - 1/p^4) = 0.7124102278... . (End)

A181552 T(n,k) = gcd(n,k) A181549(k), triangle read by rows.

Original entry on oeis.org

1, 1, 6, 1, 3, 12, 1, 6, 4, 20, 1, 3, 4, 5, 30, 1, 6, 12, 10, 6, 72, 1, 3, 4, 5, 6, 12, 56, 1, 6, 4, 20, 6, 24, 8, 80, 1, 3, 12, 5, 6, 36, 8, 10, 99, 1, 6, 4, 10, 30, 24, 8, 20, 11, 180, 1, 3, 4, 5, 6, 12, 8, 10, 11, 18, 132, 1, 6, 12, 20, 6, 72, 8, 40, 33, 36, 12, 240
Offset: 1

Views

Author

Peter Luschny, Oct 30 2010

Keywords

Comments

A181549(n) = sum{k|n} k mu_2(n/k) is a variant of Euler's phi function relative to the Moebius function of order 2.

Examples

			1,
1,6,
1,3,12,
1,6,.4,20,
1,3,.4,.5,30,
1,6,12,10,.6,72,
1,3,.4,.5,.6,12,56,
1,6,.4,20,.6,24,.8,80,
		

Crossrefs

Cf. A130212, A181538, row sums of triangle is A181553.

Programs

  • Maple
    A181552 := (n,k) -> igcd(n,k)*A181549(k);
  • Mathematica
    mu2[1] = 1; mu2[n_] := Sum[Boole[Divisible[n, d^2]]*MoebiusMu[n/d^2]*MoebiusMu[n/d], {d, Divisors[n]}]; A181549[n_] := Sum[k*mu2[n/k], {k, Divisors[n]}]; t[n_, k_] := GCD[n, k]*A181549[k]; Table[t[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Feb 05 2014 *)
Showing 1-2 of 2 results.