A181609 Kendell-Mann numbers in terms of Mahonian distribution.
2, 3, 7, 23, 108, 604, 3980, 30186, 258969, 2479441, 26207604, 303119227, 3807956707, 51633582121, 751604592219, 11690365070546, 193492748067369, 3395655743755865, 62980031819261211, 1230967683216803500
Offset: 2
Keywords
Examples
M(2)=2, M(3)=3, M(4)=7,...
Links
- Mikhail Gaichenkov, The property of Kendall-Mann numbers, answered by Richard Stanley, 2010
- Mikhail Gaichenkov, A combinatorial proof for the property of KM numbers?
Crossrefs
Cf. A000140.
Formula
M(n) = Round(n!/sqrt(Pi*n(n-1)(2n+5)/36)).
Comments