This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181619 #11 Sep 01 2013 11:55:13 %S A181619 11,51,61,101,221,261,571,2271,2821,2871,5071,5651,5761,6561,6951, %T A181619 9751,10461,10851,11621,11711,14961,15911,16551,17171,17601,18511, %U A181619 19071,19551,23151,25261,27351,27751 %N A181619 Numbers k such that k^2+1 = 2p,(k+1)^2+1 = 5q, (k+2)^2+1 = 10r where p, q, and r are primes. %C A181619 a(n) == 1 (mod 10). %H A181619 Harvey P. Dale, <a href="/A181619/b181619.txt">Table of n, a(n) for n = 1..1000</a> %e A181619 a(2) = 51 because 51^2+1 = 2*1301, 52^2+1 = 5*541, 53^2+1 = 10*281. %p A181619 with(numtheory):for n from 1 to 30000 do : x:=n^2+1:y:=(n+1)^2+1:z:=(n+2)^2+1:x1:=factorset(x):y1:=factorset(y):z1:=factorset(z):n1:=bigomega(x):n2:=bigomega(y):n3:=bigomega(z):if %p A181619 x1[1]=2 and n1=2 and y1[1]=5 and n2 = 2 and z1[1]=2 and z1[2]=5 and n3=3 then %p A181619 printf(`%d, `, n):else fi:od: %t A181619 ksQ[k_]:=And@@PrimeQ[{(k^2+1)/2,((k+1)^2+1)/5,((k+2)^2+1)/10}]; Select[ Range[30000],ksQ] (* _Harvey P. Dale_, Sep 01 2013 *) %o A181619 (PARI) forstep(k=1,1e5,10,if(isprime(k^2\2+1)&isprime((k+1)^2\5+1)&isprime((k+2)^2\10+1),print1(k", "))) %Y A181619 Cf. A002144, A005574, A002731. %K A181619 nonn %O A181619 1,1 %A A181619 _Michel Lagneau_, Jan 31 2011