This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181628 #29 Aug 17 2024 23:01:54 %S A181628 6,10,14,22,34,38,82,106,218,334,4414,7246,10118,10942,15898,42422, %T A181628 65986 %N A181628 Numbers k such that (2^k + 3^k)/13 is prime. %C A181628 All terms are of the form 2p, p prime. %C A181628 The prime (2^4414 + 3^4414)/13 = 79300327387 ...611266 985181 has 2105 decimal digits. %C A181628 a(18) > 10^5. - _Michael S. Branicky_, Aug 17 2024 %e A181628 10 is in the sequence because (2^10+ 3^10)/13 = 60073/13 = 4621 is prime. %p A181628 with(numtheory):for n from 1 to 4500 do: x:= (2^n + 3^n)/13:if floor(x)=x and %p A181628 type(x,prime)=true then printf(`%d, `, n):else fi:od: %p A181628 # alternative %p A181628 Res:= NULL: %p A181628 p:= 2: %p A181628 while p < 6000 do %p A181628 p:= nextprime(p); %p A181628 if isprime((2^(2*p)+3^(2*p))/13) then Res:= Res, 2*p fi; %p A181628 od: %p A181628 Res; # _Robert Israel_, Apr 26 2017 %o A181628 (PARI) is(n)=n%2==0 && isprime(n/2) && ispseudoprime((2^n+3^n)/13) \\ _Charles R Greathouse IV_, Jun 06 2017 %o A181628 (Python) %o A181628 from sympy import isprime %o A181628 def afind(limit, startk=1): %o A181628 k = startk %o A181628 pow2 = 2**k %o A181628 pow3 = 3**k %o A181628 for k in range(startk, limit+1): %o A181628 q, r = divmod(pow2+pow3, 13) %o A181628 if r == 0 and isprime(q): %o A181628 print(k, end=", ") %o A181628 pow2 *= 2 %o A181628 pow3 *= 3 %o A181628 afind(1000) # _Michael S. Branicky_, Dec 28 2021 %Y A181628 Cf. A057469. %K A181628 nonn,more %O A181628 1,1 %A A181628 _Michel Lagneau_, Nov 18 2010 %E A181628 a(12) from _D. S. McNeil_, Nov 18 2010 %E A181628 a(13) and a(14) from _Robert Israel_, Apr 26 2017 %E A181628 a(15) from _Michael S. Branicky_, Dec 28 2021 %E A181628 a(16) from _Michael S. Branicky_, Apr 26 2023 %E A181628 a(17) from _Michael S. Branicky_, Aug 17 2024