A181634 Irregular triangle T(n,k) where row n contains all pairs [a,b] of the compositions n=a+b into nonnegative pairs where a == b (mod 3).
1, 1, 3, 0, 0, 3, 2, 2, 4, 1, 1, 4, 6, 0, 3, 3, 0, 6, 5, 2, 2, 5, 7, 1, 4, 4, 1, 7, 9, 0, 6, 3, 3, 6, 0, 9, 8, 2, 5, 5, 2, 8, 10, 1, 7, 4, 4, 7, 1, 10, 12, 0, 9, 3, 6, 6, 3, 9, 0, 12, 11, 2, 8, 5, 5, 8, 2, 11, 13, 1, 10, 4, 7, 7, 4, 10, 1, 13, 15, 0, 12, 3, 9, 6, 6
Offset: 2
Examples
1, 1; 3, 0, 0, 3; 2, 2; 4, 1, 1, 4; 6, 0, 3, 3, 0, 6; 5, 2, 2, 5; 7, 1, 4, 4, 1, 7; 9, 0, 6, 3, 3, 6, 0, 9; 8, 2, 5, 5, 2, 8; 10, 1, 7, 4, 4, 7, 1, 10; 12, 0, 9, 3, 6, 6, 3, 9, 0, 12; 11, 2, 8, 5, 5, 8, 2, 11; 13, 1, 10, 4, 7, 7, 4, 10, 1, 13; 15, 0, 12, 3, 9, 6, 6, 9, 3, 12, 0, 15; 14, 2, 11, 5, 8, 8, 5, 11, 2, 14;
Programs
-
Maple
A181634_row := proc(n) local L,a,b; L := [] ; for a from n to 0 by -1 do b := n-a ; if modp(a,3) = modp(b,3) then L := [op(L),a,b] ; end if; end do: L ; end proc: for n from 2 to 18 do print(op(A181634_row(n))) ; end do: # R. J. Mathar, May 13 2016
-
Mathematica
If[First@ # == Last@ # &@ Take[#, 2], Join[Reverse@ Drop[#, 2], #], Join[Reverse@ #, #]] & /@ Function[n, Flatten@ Select[Transpose@ {n - #, #}, Mod[First@ #, 3] == Mod[Last@ #, 3] &] &@ Range[Ceiling[n/2], n]] /@ Range[2, 16] // Flatten (* Michael De Vlieger, May 13 2016 *)
Extensions
Edited by R. J. Mathar, May 13 2016
Comments