cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181650 Inverse of number triangle A070909.

This page as a plain text file.
%I A181650 #16 Aug 26 2021 21:28:10
%S A181650 1,-1,1,-1,0,1,0,0,-1,1,0,0,-1,0,1,0,0,0,0,-1,1,0,0,0,0,-1,0,1,0,0,0,
%T A181650 0,0,0,-1,1,0,0,0,0,0,0,-1,0,1,0,0,0,0,0,0,0,0,-1,1,0,0,0,0,0,0,0,0,
%U A181650 -1,0,1
%N A181650 Inverse of number triangle A070909.
%C A181650 Generalized (conditional) Riordan array with k-th column generated by x^k*(1-x-x^2) if k is even, x^k otherwise.
%C A181650 Triangle T(n,k), read by rows, given by (-1,2,-1/2,-1/2,0,0,0,0,0,0,0,...) DELTA (1,0,-1,0,0,0,0,0,0,0,0,0,...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Nov 19 2011
%C A181650 Double Riordan array (1 - x - x^2; x/(1 - x - x^2), x*(1 - x - x^2)) as defined in Davenport et al. - _Peter Bala_, Aug 15 2021
%H A181650 D. E. Davenport, L. W. Shapiro and L. C. Woodson, <a href="https://doi.org/10.37236/2034">The Double Riordan Group</a>, The Electronic Journal of Combinatorics, 18(2) (2012).
%F A181650 G.f.: (1+(y-1)*x-x^2)/((1-y*x)*(1+y*x)). - _Philippe Deléham_, Nov 19 2011
%e A181650 Triangle begins
%e A181650    1,
%e A181650   -1,  1,
%e A181650   -1,  0,  1,
%e A181650    0,  0, -1,  1,
%e A181650    0,  0, -1,  0,  1,
%e A181650    0,  0,  0,  0, -1,  1,
%e A181650    0,  0,  0,  0, -1,  0,  1,
%e A181650    0,  0,  0,  0,  0,  0, -1,  1,
%e A181650    0,  0,  0,  0,  0,  0, -1,  0,  1,
%e A181650    0,  0,  0,  0,  0,  0,  0,  0, -1,  1,
%e A181650    0,  0,  0,  0,  0,  0,  0,  0, -1,  0,  1
%e A181650 Production matrix begins
%e A181650   -1,  1,
%e A181650   -2,  1,  1,
%e A181650   -1,  1, -1,  1,
%e A181650   -1,  1, -2,  1,  1,
%e A181650   -1,  1, -1,  1, -1,  1,
%e A181650   -1,  1, -1,  1, -2,  1,  1,
%e A181650   -1,  1, -1,  1, -1,  1, -1,  1,
%e A181650   -1,  1, -1,  1, -1,  1, -2,  1,  1,
%e A181650   -1,  1, -1,  1, -1,  1, -1,  1, -1,  1
%Y A181650 Cf. A084221, A084938.
%K A181650 easy,sign,tabl
%O A181650 0,1
%A A181650 _Paul Barry_, Nov 03 2010