cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181697 Length of the complete Cunningham chain of the first kind starting with prime(n).

This page as a plain text file.
%I A181697 #33 Nov 24 2021 09:02:58
%S A181697 5,2,4,1,3,1,1,1,2,2,1,1,3,1,1,2,1,1,1,1,1,1,2,6,1,1,1,1,1,2,1,2,1,1,
%T A181697 1,1,1,1,1,2,5,1,2,1,1,1,1,1,1,1,2,2,1,2,1,1,1,1,1,2,1,2,1,1,1,1,1,1,
%U A181697 1,1,1,4,1,1,1,1,1,1,1,1,2,1,2,1,1,2,1,1
%N A181697 Length of the complete Cunningham chain of the first kind starting with prime(n).
%C A181697 Number of iterations x->2x+1 needed to get a composite number, when starting with prime(n).
%C A181697 prime(n) is in A005384, i.e., a Sophie Germain prime, iff a(n)>1.
%C A181697 a(n) is the least k such that 2^k * (prime(n)+1) - 1 is composite. Note that a(n) is well defined since 2^(p-1) * (p+1) - 1 is divisible by p for odd primes p. - _Jianing Song_, Nov 24 2021
%H A181697 T. D. Noe, <a href="/A181697/b181697.txt">Table of n, a(n) for n = 1..10000</a>
%H A181697 G. Löh, <a href="http://www.jstor.org/stable/2008735">Long chains of nearly doubled primes</a>, Math. Comp., 53 (1989), 751-759.
%H A181697 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cunningham_chain">Cunningham chain</a>
%F A181697 a(n) < prime(n) for n > 1; see Löh (1989), p. 751. - _Jonathan Sondow_, Oct 28 2015
%F A181697 max(a(n), A181715(n)) = A263879(n) for n > 2. - _Jonathan Sondow_, Oct 30 2015
%e A181697 2 -> 5 -> 11 -> 23 -> 47 -> 95 = 5*19, so a(1) = 5, a(3) = 4, a(5) = 3, a(9) = 2, and a(15) = 1. - _Jonathan Sondow_, Oct 30 2015
%t A181697 Table[p = Prime[n]; cnt = 1; While[p = 2*p + 1; PrimeQ[p], cnt++]; cnt, {n, 100}] (* _T. D. Noe_, Jul 12 2012 *)
%o A181697 (PARI) a(n)= n=prime(n); for(c=1,1e9, is/*pseudo*/prime(n=2*n+1) || return(c))
%Y A181697 Cf. A005602, A181715, A263879.
%Y A181697 See also A075712, A338945.
%K A181697 nonn
%O A181697 1,1
%A A181697 _M. F. Hasler_, Nov 17 2010
%E A181697 Definition clarified by _Jonathan Sondow_, Oct 28 2015