cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181715 Length of the complete Cunningham chain of the second kind starting with prime(n).

This page as a plain text file.
%I A181715 #43 Nov 24 2021 08:18:22
%S A181715 3,2,1,2,1,1,1,3,1,1,2,2,1,1,1,1,1,1,1,1,1,3,1,1,2,1,1,1,1,1,1,1,1,2,
%T A181715 1,1,2,1,1,1,1,1,1,1,1,2,2,1,1,2,1,1,1,1,1,1,1,2,1,1,1,1,2,1,1,1,3,2,
%U A181715 1,1,1,1,2,1,2,1,1,1,1,1,1,1,1,1,3,1,1,1
%N A181715 Length of the complete Cunningham chain of the second kind starting with prime(n).
%C A181715 Number of iterations x -> 2x-1 needed to get a composite number, when starting with prime(n).
%C A181715 Dickson's conjecture implies that, for every positive integer r, there exist infinitely many n such that a(n) = r. - _Lorenzo Sauras Altuzarra_, Feb 12 2021
%C A181715 a(n) is the least k such that 2^k * (prime(n)-1) + 1 is composite. Note that a(n) is well defined since 2^(p-1) * (p-1) + 1 is divisible by p for odd primes p. - _Jianing Song_, Nov 24 2021
%H A181715 T. D. Noe, <a href="/A181715/b181715.txt">Table of n, a(n) for n = 1..10000</a>
%H A181715 G. Löh, <a href="http://www.jstor.org/stable/2008735">Long chains of nearly doubled primes</a>, Math. Comp., 53 (1989), 751-759.
%H A181715 Michael Penn, <a href="https://www.youtube.com/watch?v=P0G39kdqmbg">Romanian Mathematical Olympiad Problem</a>, Youtube video, 2020.
%H A181715 Wikipedia, <a href="https://en.wikipedia.org/wiki/Cunningham_chain">Cunningham chain</a>
%F A181715 a(n) < prime(n) for n > 1; see Löh (1989), p. 751. - _Jonathan Sondow_, Oct 28 2015
%F A181715 max(a(n), A181697(n)) = A263879(n) for n > 2. - _Jonathan Sondow_, Oct 30 2015
%F A181715 a(n) = A285700(A000040(n)). - _Antti Karttunen_, Apr 26 2017
%e A181715 2 -> 3 -> 5 -> 9 = 3^2, so a(1) = 3 and a(2) = 2. - _Jonathan Sondow_, Oct 30 2015
%p A181715 a := proc(n)
%p A181715    local c, l:
%p A181715    c, l := 0, ithprime(n):
%p A181715    while isprime(l) do c, l := c+1, 2*l-1: od:
%p A181715    c:
%p A181715 end: # _Lorenzo Sauras Altuzarra_, Feb 12 2021
%t A181715 Table[p = Prime[n]; cnt = 1; While[p = 2*p - 1; PrimeQ[p], cnt++]; cnt, {n, 100}] (* _T. D. Noe_, Jul 12 2012 *)
%t A181715 Table[-1 + Length@ NestWhileList[2 # - 1 &, Prime@ n, PrimeQ@ # &], {n, 98}] (* _Michael De Vlieger_, Apr 26 2017 *)
%o A181715 (PARI) a(n)= n=prime(n); for(c=1,1e9, is/*pseudo*/prime(n=2*n-1) || return(c))
%Y A181715 Cf. A000040, A005382, A005408, A005602, A005603, A181697, A263879, A285700, A285706, A057326, A057327, A057328, A057329, A057330, A064812.
%Y A181715 Cf. A137288 (positions of terms > 1).
%K A181715 nonn
%O A181715 1,1
%A A181715 _M. F. Hasler_, Nov 17 2010
%E A181715 Escape clause added to definition by _N. J. A. Sloane_, Feb 19 2021
%E A181715 Escape clause deleted from definition by _Jianing Song_, Nov 24 2021