This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181749 #16 Dec 18 2020 11:50:30 %S A181749 1,24,6384,2306904,964948464,439331916888,211383647188320, %T A181749 105734905550405400,54434276297806242480,28652982232251791825880, %U A181749 15350736081585866511795024,8343014042738696079671066904,4588687856038215036178166258304 %N A181749 The number of paths of a chess rook in a 4D hypercube, from (0..0) to (n..n), where the rook may move in steps that are multiples of (1,0..0), (0,1,0..0), ..., (0..0,1). %H A181749 Alois P. Heinz, <a href="/A181749/b181749.txt">Table of n, a(n) for n = 0..350</a> %F A181749 Recursion: see Maple program. - _Alois P. Heinz_, Aug 31 2014 %F A181749 a(n) ~ 8 * 5^(4*n-1) / (3*sqrt(3) * (Pi*n)^(3/2)). - _Vaclav Kotesovec_, Sep 03 2014 %e A181749 a(1) = 24 because there are 24 rook paths from (0..0) to (1..1). %p A181749 a:= proc(n) option remember; `if`(n<4, [1, 24, 6384, 2306904][n+1], %p A181749 ((44148546*n^7-417566955*n^6+1582366209*n^5-3082719955*n^4 %p A181749 +3301523581*n^3-1923587242*n^2+559133416*n-61892160)*(n-1)^2* %p A181749 a(n-1) -2*(n-2)*(131501097*n^8-1572004161*n^7+7935973542*n^6 %p A181749 -21971456652*n^5+36200366619*n^4-35926876063*n^3+20608609302*n^2 %p A181749 -6086148644*n+688049040)*a(n-2) +(393838614*n^7-4640973051*n^6 %p A181749 +22263043023*n^5-55659442951*n^4+77029268163*n^3 %p A181749 -57647348158*n^2+20864000120*n-2733950400)*(n-3)^2*a(n-3) %p A181749 -5000*(34983*n^4-138138*n^3+184101*n^2-92498*n+14640)*(n-3)^2* %p A181749 (n-4)^3*a(n-4))/ (2*n^3*(464360-1015046*n+808413*n^2 %p A181749 -278070*n^3+34983*n^4)*(n-1)^2)) %p A181749 end: %p A181749 seq(a(n), n=0..20); # _Alois P. Heinz_, Aug 31 2014 %t A181749 b[l_List] := b[l] = If[Union[l]~Complement~{0} == {}, 1, Sum[Sum[b[Sort[ ReplacePart[l, i -> l[[i]] - j]]], {j, 1, l[[i]]}], {i, 1, Length[l]}]]; %t A181749 a[n_] := b[Array[n&, 4]]; %t A181749 a /@ Range[0, 20] (* _Jean-François Alcover_, Dec 18 2020, after _Alois P. Heinz_ in A181731 *) %Y A181749 Row d=4 of A181731. %K A181749 nonn %O A181749 0,2 %A A181749 _Manuel Kauers_, Nov 16 2010