This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181756 #10 Oct 15 2024 04:23:34 %S A181756 1,10,11,1001,110001,1001000001,1100010000000001, %T A181756 10010000010000000000000001, %U A181756 110001000000000100000000000000000000000001,10010000010000000000000001000000000000000000000000000000000000000001 %N A181756 a(1) = 1, a(2) = 10. For n >= 3, a(n) is found by concatenating the first n-1 terms of the sequence and then dividing the resulting number by a(n-1). %C A181756 The calculations for the first few values of the sequence are %C A181756 ... a(3) = 110/10 = 11 %C A181756 ... a(4) = 11011/11 = 1001 %C A181756 ... a(5) = 110111001/1001 = 110001. %C A181756 The above calculations are in base 10, but we get exactly the same results when working in an arbitrary base b. For example, with starting values a(1) = 1, a(2) = b (= 10 in base b), we get %C A181756 ... a(3) = (b^2+b)/b = b+1 which equals 11 in base b, %C A181756 ... a(4) = (b^4+b^3+b+1)/(b+1) = b^3+1 = 1001 in base b, %C A181756 and so on. %C A181756 For similarly defined sequences see A181754, A181755 and A181864 through A181870. %F A181756 DEFINITION %F A181756 a(1) = 1, a(2) = 10, and for n >= 3 %F A181756 (1)... a(n) = concatenate(a(1),a(2),...,a(n-1))/a(n-1). %F A181756 RECURRENCE RELATION %F A181756 For n >= 2 %F A181756 (2)... a(n+2) = 100^F(n)*a(n)+1, %F A181756 where F(n) = A000045(n) are the Fibonacci numbers. %F A181756 For n >= 2, a(n) has 2*F(n-1) digits. %p A181756 #A181756 %p A181756 M:=10: %p A181756 a:=array(1..M):s:=array(1..M): %p A181756 a[1]:=1:a[2]:=10: %p A181756 s[1]:=convert(a[1],string): %p A181756 s[2]:=cat(s[1],convert(a[2],string)): %p A181756 for n from 3 to M do %p A181756 a[n] := parse(s[n-1])/a[n-1]; %p A181756 s[n]:= cat(s[n-1],convert(a[n],string)); %p A181756 end do: %p A181756 seq(a[n],n = 1..M); %Y A181756 Cf. A000045, A181754, A181755, A181864, A181865, A181866, A181867, A181868, A181869, A181870 %K A181756 easy,nonn,base %O A181756 1,2 %A A181756 _Peter Bala_, Nov 09 2010