cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181779 Duplicate of A092134.

This page as a plain text file.
%I A181779 #25 Aug 28 2025 06:52:44
%S A181779 2,5,1,1,1,1,10,1,1,2,8,7643,4,1,51,2,2,8,5,2,1,6,5,4,1,42,2,1,1,1,1,
%T A181779 1,1,1,6,2,6,2,12,2,1,6,3,13,11,2,9,2,1,4,1,2,1,6,3,1,1,1,11,3,1,2,1,
%U A181779 1,2,3,3,1,2,3,1,56,1,24,6,20,3,27,2,1,2,1,2,5,2,1,1,14,1,91,1,2,1,1,5,1,1,1,1,1,1,1,36,1,1,1,4,1,1,2,1,1,1,1,1,2,1,1,16,21
%N A181779 Duplicate of A092134.
%C A181779 Previous name was: Continued fraction for phi^phi.
%D A181779 H. Walser, The Golden Section, Math. Assoc. of Amer, Washington DC 2001.
%D A181779 C. J. Willard, Le nombre d'or, Magnard, Paris 1987.
%e A181779 2.178457567937599147372545... = 2 + 1/(5 + 1/(1 + 1/(1 + 1/(1 + 1/(1 + ...))))).
%p A181779 with(numtheory):Digits:= 300: x:=(sqrt(5)+1)/2:convert(evalf(x^x), confrac);
%t A181779 ContinuedFraction[GoldenRatio^ GoldenRatio, 100 ]
%o A181779 (PARI) phi=(1+sqrt(5))/2;contfrac(phi^phi) \\ _Charles R Greathouse IV_, Jul 29 2011
%Y A181779 Cf. A144749 (decimal expansion).
%K A181779 dead
%O A181779 0,1
%A A181779 _Michel Lagneau_
%E A181779 Offset changed and missing term inserted by _Andrew Howroyd_, Jul 08 2024