This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181782 #38 Nov 21 2019 04:19:34 %S A181782 25,49,65,85,91,121,125,133,145,169,175,185,205,217,221,231,247,259, %T A181782 265,289,301,305,325,341,343,361,365,377,385,403,425,427,435,445,451, %U A181782 469,475,481,485,493,505,511,529,533,545,553,559,561,565,589,595,625,629,637,645,651,671,679,685,689,697 %N A181782 Odd composite numbers n that are strong pseudoprimes to some base a, 2 <= a <= n-2. %H A181782 Amiram Eldar, <a href="/A181782/b181782.txt">Table of n, a(n) for n = 1..10000</a> %e A181782 49 is a strong pseudoprime to the bases 18, 19, 30 and 31, so 49 is in the sequence. %o A181782 (PARI) /* function sppq() from http://www.jjj.de/pari/rabinmiller.gpi */ %o A181782 sppq(n,a)= %o A181782 { /* Return whether n is a strong pseudoprime to base a (Rabin Miller) */ %o A181782 local(q, t, b, e); %o A181782 q = n-1; t = 0; while ( 0==bitand(q,1), q\=2; t+=1 ); %o A181782 /* here n==2^t*q+1 */ %o A181782 b = Mod(a, n)^q; %o A181782 if ( 1==b, return(1) ); %o A181782 e = 1; %o A181782 while ( e<t, %o A181782 if( (b==1) || (b==n-1), break(); ); %o A181782 b *= b; %o A181782 e++; %o A181782 ); %o A181782 return( if ( b!=(n-1), 0, 1 ) ); %o A181782 } %o A181782 forstep(n=3,1000,2,if(isprime(n),next());for(a=2,n-2,if(sppq(n,a),print1(n,", ");break()));); %o A181782 /* _Joerg Arndt_, Dec 27 2010 */ %o A181782 (PARI) select( is_A181782(n)={bittest(n,0) && !isprime(n) && for(a=2,n-2, my(t=valuation(n-1,2), b=Mod(a,n)^(n>>t)); b==1&&return(1); while(t-->0 && b!=-1 && b!=1, b=b^2); b==-1&&return(1))}, [1..700]) \\ Defines is_A181782(): select(...) gives a check and illustration for free. Inside the for loop is the exact equivalent of the sppq() function above. - _M. F. Hasler_, Nov 26 2018 %Y A181782 Cf. A141768. %K A181782 nonn %O A181782 1,1 %A A181782 _Karsten Meyer_, Nov 10 2010 %E A181782 Definition corrected by _Max Alekseyev_, Nov 12 2010 %E A181782 Terms corrected by _Joerg Arndt_, Dec 27 2010