cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181783 Array described in comments to A053482, here read by increasing antidiagonals. See comments below.

This page as a plain text file.
%I A181783 #43 Apr 14 2024 17:09:40
%S A181783 1,1,1,1,1,1,1,1,2,1,1,1,5,4,1,1,1,16,21,7,1,1,1,65,142,63,11,1,1,1,
%T A181783 326,1201,709,151,16,1,1,1,1957,12336,9709,2521,311,22,1,1,1,13700,
%U A181783 149989,157971,50045,7186,575,29,1,1,1,109601,2113546,2993467,1158871,193765,17536,981,37,1
%N A181783 Array described in comments to A053482, here read by increasing antidiagonals. See comments below.
%C A181783 We denote by a(n,k) the number in row number n >= 0 and column number k >= 0. The recurrence which defines the array is a(n,k) = n*(k-1)*a(n-1,k) + a(n,k-1). The initial values are given by a(n,0) = 1 = a(0,k) for all n >= 0 and k >= 0.
%F A181783 If we consider the e.g.f. Psi(k) of column number k we have: Psi(k)(z) = Psi(k-1)(z)/(1-(k-1)*z) with Psi(1)(z) = exp(z). Then Psi(k)(z) = exp(z)/Product_{j=0..k-1} (1 - j*z). We conclude that a(n,k) = n!*Sum_{m=0..n} Sum_{j=1..k-1} (-1)^(k-1-j)*j^(m+k-2)/((n-m)!*(j-1)!*(k-1-j)!). It seems after the recurrence (and its proof) in A053482 that:
%F A181783 A(n,k) = -Sum_{j=1..k-1} s1(k,k-j)*n*(n-1)*...*(n-k+1)*a(n-j,k) + 1 where s1(m,n) are the classical Stirling numbers of the first kind.
%F A181783 A(n,1) = 1 for every n.
%F A181783 A(1,k) = 1 + k*(k-1)/2 for every k.
%F A181783 A(n, k+1) = A371898(n+k, k) * n! / ((n+k)! * k!). - _Werner Schulte_, Apr 14 2024
%e A181783 Array read row after row:
%e A181783   1, 1,    1,      1,       1,        1,         1, ...
%e A181783   1, 1,    2,      4,       7,       11,        16, ...
%e A181783   1, 1,    5,     21,      63,      151,       311, ...
%e A181783   1, 1,   16,    142,     709,     2521,      7186, ...
%e A181783   1, 1,   65,   1201,    9709,    50045,    193765, ...
%e A181783   1, 1,  326,  12336,  157971,  1158871,   6002996, ...
%e A181783   1, 1, 1957, 149989, 2993467, 30806371, 210896251, ...
%e A181783   ...
%e A181783 A(4,3) = 1201.
%p A181783 A181783 := proc(n,k)
%p A181783     option remember;
%p A181783     if n =0 or k = 0 then
%p A181783         1;
%p A181783     else
%p A181783         n*(k-1)*procname(n-1,k)+procname(n,k-1) ;
%p A181783     end if;
%p A181783 end proc:
%p A181783 seq(seq(A181783(d-k,k),k=0..d),d=0..12) ; # _R. J. Mathar_, Mar 02 2016
%t A181783 T[n_, k_] := T[n, k] = If[n == 0 || k == 0, 1, n (k - 1) T[n - 1, k] + T[n, k - 1]];
%t A181783 Table[T[n - k, k], {n, 0, 12}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Mar 10 2023 *)
%Y A181783 Cf. A000522, A053482, A185106, A371898.
%K A181783 nonn,tabl,easy
%O A181783 0,9
%A A181783 _Richard Choulet_, Dec 23 2012
%E A181783 Edited by _N. J. A. Sloane_, Dec 24 2012