cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181812 Range of values of A181811, in order of first appearance: a(n) = A181811(2n-1).

This page as a plain text file.
%I A181812 #8 May 15 2017 19:56:05
%S A181812 1,2,6,30,4,210,2310,12,30030,510510,60,9699690,36,8,223092870,
%T A181812 6469693230,420,180,200560490130,4620,7420738134810,304250263527210,
%U A181812 24,13082761331670030,900,60060,614889782588491410,1260,1021020,32589158477190044730
%N A181812 Range of values of A181811, in order of first appearance: a(n) = A181811(2n-1).
%C A181812 a(n)=smallest integer that, upon multiplying any divisor of the n-th odd positive integer (A005408(n)), produces a member of A025487.
%C A181812 A permutation of the members of A025487.
%H A181812 Indranil Ghosh, <a href="/A181812/b181812.txt">Table of n, a(n) for n = 1..1000</a>
%F A181812 If 2n-1 = Product p(i)^e(i), then a(n) = Product A002110(i-1)^e(i). I.e., a(n)= A181811(A005408(n)).
%e A181812 For any divisor d of 15 (d = 1, 3, 5, 15), 12d (12, 36, 60, 180) is always a member of A025487. 12 is the smallest integer with this relationship to 15; therefore, since 15 = A005408(8), a(8)=12.
%o A181812 (Python)
%o A181812 from sympy import primerange, factorint
%o A181812 from operator import mul
%o A181812 def P(n): return reduce(mul, [i for i in primerange(2, n + 1)])
%o A181812 def a181811(n):
%o A181812     f = factorint(n)
%o A181812     return 1 if n==1 else (reduce(mul, [P(i)**f[i] for i in f]))/n
%o A181812 def a(n): return a181811(2*n - 1) # _Indranil Ghosh_, May 15 2017
%K A181812 nonn
%O A181812 1,2
%A A181812 _Matthew Vandermast_, Nov 30 2010