This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181818 #38 Jul 17 2023 07:59:52 %S A181818 1,2,4,8,12,16,24,32,48,64,96,128,144,192,256,288,360,384,512,576,720, %T A181818 768,1024,1152,1440,1536,1728,2048,2304,2880,3072,3456,4096,4320,4608, %U A181818 5760,6144,6912,8192,8640,9216,11520,12288,13824,16384,17280,18432,20736,23040,24576,27648,32768 %N A181818 Products of superprimorials (A006939). %C A181818 Sorted list of positive integers with a factorization Product p(i)^e(i) such that (e(1) - e(2)) >= (e(2) - e(3)) >= ... >= (e(k-1) - e(k)) >= e(k), with k = A001221(n), and p(k) = A006530(n) = A000040(k), i.e., the prime factors p(1) .. p(k) must be consecutive primes from 2 onward. - Comment clarified by _Antti Karttunen_, Apr 28 2022 %C A181818 Subsequence of A025487. A025487(n) belongs to this sequence iff A181815(n) is a member of A025487. %C A181818 If prime signatures are considered as partitions, these are the members of A025487 whose prime signature is conjugate to the prime signature of a member of A182863. - _Matthew Vandermast_, May 20 2012 %H A181818 Amiram Eldar, <a href="/A181818/b181818.txt">Table of n, a(n) for n = 1..10000</a> %e A181818 2, 12, and 360 are all superprimorials (i.e., members of A006939). Therefore, 2*2*12*360 = 17280 is included in the sequence. %e A181818 From _Gus Wiseman_, Aug 12 2020 (Start): %e A181818 The sequence of factorizations (which are unique) begins: %e A181818 1 = empty product %e A181818 2 = 2 %e A181818 4 = 2*2 %e A181818 8 = 2*2*2 %e A181818 12 = 12 %e A181818 16 = 2*2*2*2 %e A181818 24 = 2*12 %e A181818 32 = 2*2*2*2*2 %e A181818 48 = 2*2*12 %e A181818 64 = 2*2*2*2*2*2 %e A181818 96 = 2*2*2*12 %e A181818 128 = 2*2*2*2*2*2*2 %e A181818 144 = 12*12 %e A181818 192 = 2*2*2*2*12 %e A181818 256 = 2*2*2*2*2*2*2*2 %e A181818 (End) %t A181818 Select[Range[100],PrimePi[First/@If[#==1,{}, FactorInteger[#]]]==Range[ PrimeNu[#]]&&LessEqual@@Differences[ Append[Last/@FactorInteger[#],0]]&] (* _Gus Wiseman_, Aug 12 2020 *) %o A181818 (PARI) %o A181818 firstdiffs0forward(vec) = { my(v=vector(#vec)); for(n=1,#v,v[n] = vec[n]-if(#v==n,0,vec[1+n])); (v); }; %o A181818 A353518(n) = if(1==n,1,my(f=factor(n), len=#f~); if(primepi(f[len,1])!=len, return(0), my(diffs=firstdiffs0forward(f[,2])); for(i=1,#diffs-1,if(diffs[i+1]>diffs[i],return(0))); (1))); %o A181818 isA181818(n) = A353518(n); \\ _Antti Karttunen_, Apr 28 2022 %Y A181818 A181817 rearranged in numerical order. Also includes all members of A000079, A001021, A006939, A009968, A009992, A066120, A166475, A167448, A181813, A181814, A181816, A182763. %Y A181818 Subsequence of A025487, A055932, A087980, A130091, A181824. %Y A181818 A001013 is the version for factorials. %Y A181818 A336426 is the complement. %Y A181818 A336496 is the version for superfactorials. %Y A181818 A001055 counts factorizations. %Y A181818 A006939 lists superprimorials or Chernoff numbers. %Y A181818 A317829 counts factorizations of superprimorials. %Y A181818 Cf. A022915, A076954, A304686, A325368, A336419, A336420, A336421, A353518 (characteristic function). %K A181818 nonn %O A181818 1,2 %A A181818 _Matthew Vandermast_, Nov 30 2010