A181832 The product of the positive integers <= n that are strongly prime to n.
1, 1, 1, 1, 1, 3, 1, 20, 15, 35, 7, 36288, 35, 277200, 1485, 4576, 9009, 20432412000, 5005, 1097800704000, 459459, 5912192, 2834325, 2322315553259520000, 1616615, 124672148625024, 4865140665
Offset: 0
Keywords
Examples
a(11) = 3 * 4 * 6 * 7 * 8 * 9 = 36288.
Links
- Robert G. Wilson v, Table of n, a(n) for n = 0..1000
- Peter Luschny, Strong coprimality.
Programs
-
Maple
with(numtheory): StrongCoprimes := n -> select(k->igcd(k,n)=1,{$1..n}) minus divisors(n-1): A181832 := proc(n) local i; mul(i,i=StrongCoprimes(n)) end: coprimorial := proc(n) local i; mul(i,i=select(k->igcd(k,n)=1,[$1..n])) end: divisorial := proc(n) local i; mul(i,i=divisors(n)) end: A181832a := n -> `if`(n=0,1,coprimorial(n)/divisorial(n-1)):
-
Mathematica
f[n_] := Times @@ Select[ Range@ n, GCD[#, n] == 1 && Mod[n - 1, #] != 0 &]; Array[f, 27, 0] (* Robert G. Wilson v, Aug 03 2012 *)
Comments