This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181843 #15 Jun 02 2025 03:13:30 %S A181843 1,1,3,1,3,6,1,3,8,12,1,3,8,18,23,1,3,8,20,32,38,1,3,8,20,38,66,73,1, %T A181843 3,8,20,40,78,110,118,1,3,8,20,40,84,141,189,198,1,3,8,20,40,86,153, %U A181843 253,308,318,1,3,8,20,40,86,159,287,409,519,530,1,3,8,20,40,86,161,299,476,728,807,819 %N A181843 Triangle read by rows: Partial row sums of A181842. %e A181843 [1] 1 %e A181843 [2] 1 3 %e A181843 [3] 1 3 6 %e A181843 [4] 1 3 8 12 %e A181843 [5] 1 3 8 18 23 %e A181843 [6] 1 3 8 20 32 38 %e A181843 [7] 1 3 8 20 38 66 73 %p A181843 with(combstruct): %p A181843 a181843_row := proc(n) local k,L,l,R,part; %p A181843 R := NULL; L := 0; %p A181843 for k from 1 to n do %p A181843 part := iterstructs(Partition(n),size=n-k+1): %p A181843 while not finished(part) do %p A181843 l := nextstruct(part); %p A181843 L := L + ilcm(op(l)); %p A181843 od; %p A181843 R := R,L; %p A181843 od; %p A181843 R end: %t A181843 t[n_, k_] := LCM @@@ IntegerPartitions[n, {n - k + 1}] // Total; row[n_] := Table[t[n, k], {k, 1, n}] // Accumulate; Table[row[n], {n, 1, 12}] // Flatten (* _Jean-François Alcover_, Jul 26 2013 *) %Y A181843 Cf. A181842, A181844. %K A181843 nonn,tabl %O A181843 1,3 %A A181843 _Peter Luschny_, Dec 07 2010 %E A181843 Terms from an erroneous copy and paste transfer corrected. %E A181843 More terms from _Jean-François Alcover_, Jul 26 2013