This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181845 #12 Apr 20 2021 20:18:27 %S A181845 1,1,2,1,2,3,1,2,3,4,1,2,3,6,5,1,2,3,6,5,6,1,2,3,6,6,12,7,1,2,3,6,6, %T A181845 12,15,8,1,2,3,6,6,12,15,20,9,1,2,3,6,6,12,15,30,21,10,1,2,3,6,6,12, %U A181845 15,30,21,30,11,1,2,3,6,6,12,15,30,30,60,35,12 %N A181845 Triangle read by rows: T(n,k) = max_{c in P(n,n-k+1)} lcm(c) where P(n,m) = A008284(n,m) is the number of partitions of n into m parts. %C A181845 See A181842 for the definition of 'partition'. T(n,k) is also the triangle read by rows: T(n,k) = max_{c in C(n,n-k+1)} lcm(c) where C(n,m) is the set of all m-tuples of positive integers whose elements sum to n where the C(n,k) = A007318(n-1,k-1) are called compositions of n of size k. %H A181845 Andrew Howroyd, <a href="/A181845/b181845.txt">Table of n, a(n) for n = 1..1275</a> (rows 1..50) %e A181845 [1] 1 %e A181845 [2] 1 2 %e A181845 [3] 1 2 3 %e A181845 [4] 1 2 3 4 %e A181845 [5] 1 2 3 6 5 %e A181845 [6] 1 2 3 6 5 6 %e A181845 [7] 1 2 3 6 6 12 7 %e A181845 [8] 1 2 3 6 6 12 15 8 %e A181845 [9] 1 2 3 6 6 12 15 20 9 %p A181845 with(combstruct): %p A181845 a181845_row := proc(n) local k,L,l,R,part; %p A181845 R := NULL; %p A181845 for k from 1 to n do %p A181845 L := 0; %p A181845 part := iterstructs(Partition(n),size=n-k+1): %p A181845 # alternatively (but slower) %p A181845 # part := iterstructs(Composition(n), size=n-k+1): %p A181845 while not finished(part) do %p A181845 l := nextstruct(part); %p A181845 L := max(L,ilcm(op(l))); %p A181845 od; %p A181845 R := R,L; %p A181845 od; %p A181845 R end: %o A181845 (PARI) Row(n)={my(v=vector(n)); forpart(p=n, my(i=#p); v[i]=max(v[i], lcm(Vec(p)))); Vecrev(v)} %o A181845 { for(n=1, 10, print(Row(n))) } \\ _Andrew Howroyd_, Apr 20 2021 %Y A181845 Cf. A181842, A181843, A181844. %K A181845 nonn,tabl %O A181845 1,3 %A A181845 _Peter Luschny_, Dec 07 2010 %E A181845 Terms a(56) and beyond from _Andrew Howroyd_, Apr 20 2021