A181847 Triangle read by rows: T(n,k)= Sum_{c in C(n,k)}gcd(c) where C(n,k) is the set of all k-tuples of positive integers whose elements sum to n.
1, 2, 1, 3, 2, 1, 4, 4, 3, 1, 5, 4, 6, 4, 1, 6, 9, 11, 10, 5, 1, 7, 6, 15, 20, 15, 6, 1, 8, 12, 24, 36, 35, 21, 7, 1, 9, 12, 30, 56, 70, 56, 28, 8, 1, 10, 17, 42, 88, 127, 126, 84, 36, 9, 1
Offset: 1
Examples
[1] 1 [2] 2 1 [3] 3 2 1 [4] 4 4 3 1 [5] 5 4 6 4 1 [6] 6 9 11 10 5 1 [7] 7 6 15 20 15 6 1
Programs
-
Maple
with(combstruct): # By generating the objects, very inefficient. a181847_row := proc(n) local k,L,l,R,comp; R := NULL; for k from 1 to n do L := 0; comp := iterstructs(Composition(n),size=k): while not finished(comp) do l := nextstruct(comp); L := L + igcd(op(l)); od; R := R,L; od; R end: # second Maple program: with(numtheory): T := (n, k) -> add(phi(d)*binomial(n/d-1, k-1), d = divisors(n)): seq(seq(T(n, k), k=1..n), n=1..10); # Peter Luschny, Aug 27 2019
-
Sage
# uses[DivisorTriangle from A327029] # DivisorTriangle Computes the (0,0)-based version. DivisorTriangle(euler_phi, lambda n,k: binomial(n-1, k-1), 10) # Peter Luschny, Aug 27 2019
Comments