This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181851 #21 Jun 19 2024 17:03:24 %S A181851 1,2,1,3,4,1,4,8,6,1,5,20,15,8,1,6,21,50,24,10,1,7,56,66,96,35,12,1,8, %T A181851 60,180,160,160,48,14,1,9,96,264,432,325,244,63,16,1,10,105,510,776, %U A181851 892,585,350,80,18,1,11,220,567,1704,1835,1668,966,480,99,20,1 %N A181851 Triangle read by rows: T(n,k) = Sum_{c in composition(n,k)} lcm(c). %C A181851 Composition(n,k) is the set of the k-tuples of positive integers which sum to n (see A181842). Taking the example in A181842, T(6,2) = lcm(5,1) + lcm(4,2) + lcm(3,3) + lcm(2,4) + lcm(1,5) = 5+4+3+4+5 = 21. %H A181851 Alois P. Heinz, <a href="/A181851/b181851.txt">Rows n = 1..150, flattened</a> %e A181851 [1] 1 %e A181851 [2] 2 1 %e A181851 [3] 3 4 1 %e A181851 [4] 4 8 6 1 %e A181851 [5] 5 20 15 8 1 %e A181851 [6] 6 21 50 24 10 1 %e A181851 [7] 7 56 66 96 35 12 1 %p A181851 with(combstruct): %p A181851 a181851_row := proc(n) local k,L,l,R,comp; %p A181851 R := NULL; %p A181851 for k from 1 to n do %p A181851 L := 0; %p A181851 comp := iterstructs(Composition(n),size=k): %p A181851 while not finished(comp) do %p A181851 l := nextstruct(comp); %p A181851 L := L + ilcm(op(l)); %p A181851 od; %p A181851 R := R,L; %p A181851 od; %p A181851 R end: %t A181851 c[n_, k_] := Permutations /@ IntegerPartitions[n, {k}] // Flatten[#, 1]&; t[n_, k_] := Total[LCM @@@ c[n, k]]; Table[t[n, k], {n, 1, 11}, {k, 1, n}] // Flatten (* _Jean-François Alcover_, Feb 05 2014 *) %Y A181851 Cf. A181849, A181850, A181853. %Y A181851 T(2n,n) gives A373865. %K A181851 nonn,tabl %O A181851 1,2 %A A181851 _Peter Luschny_, Dec 07 2010