This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181853 #39 Sep 05 2023 21:23:57 %S A181853 1,1,1,1,3,2,1,6,11,6,1,10,31,34,12,1,15,81,189,182,60,1,21,141,393, %T A181853 494,282,60,1,28,288,1380,3245,3740,2034,420,1,36,456,2716,8293,13268, %U A181853 11338,4908,840,1,45,726,5578,22207,47351,57598,40602,15564,2520 %N A181853 Triangle read by rows: T(n,k) = Sum_{c in C(n,k)} lcm(c) where C(n,k) is the set of all k-subsets of {1,2,...,n}. %C A181853 The C(n,k) are also called combinations of n with size k (see A181842). %C A181853 Main diagonal gives: A003418. Lower diagonal gives: A094308. Column k=1 gives: A000217. - _Alois P. Heinz_, Jul 29 2013 %H A181853 Alois P. Heinz, <a href="/A181853/b181853.txt">Rows n = 0..46, flattened</a> %e A181853 [0] 1 %e A181853 [1] 1 1 %e A181853 [2] 1 3 2 %e A181853 [3] 1 6 11 6 %e A181853 [4] 1 10 31 34 12 %e A181853 [5] 1 15 81 189 182 60 %e A181853 [6] 1 21 141 393 494 282 60 %p A181853 with(combstruct): %p A181853 a181853_row := proc(n) local k,L,l,R,comb; %p A181853 R := NULL; %p A181853 for k from 0 to n do %p A181853 L := 0; %p A181853 comb := iterstructs(Combination(n),size=k): %p A181853 while not finished(comb) do %p A181853 l := nextstruct(comb); %p A181853 L := L + ilcm(op(l)); %p A181853 od; %p A181853 R := R,L; %p A181853 od; %p A181853 R end: %p A181853 # second Maple program: %p A181853 b:= proc(n, k) option remember; `if`(k=0, [1], %p A181853 [`if`(k<n, b(n-1, k), [])[], seq(ilcm(c, n), c=b(n-1, k-1))]) %p A181853 end: %p A181853 T:= (n, k)-> add(c, c=b(n, k)): %p A181853 seq(seq(T(n, k), k=0..n), n=0..10); # _Alois P. Heinz_, Jul 29 2013 %p A181853 # third Maple program: %p A181853 b:= proc(n, m) option remember; expand(`if`(n=0, m, %p A181853 b(n-1, ilcm(m, n))*x+b(n-1, m))) %p A181853 end: %p A181853 T:= n-> (p-> seq(coeff(p, x, i), i=0..n))(b(n, 1)): %p A181853 seq(T(n), n=0..10); # _Alois P. Heinz_, Sep 05 2023 %t A181853 t[_, 0] = 1; t[n_, k_] := Sum[LCM @@ c, {c, Subsets[Range[n], {k}]}]; Table[t[n, k], {n, 0, 8}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Jul 29 2013 *) %o A181853 (Sage) # (After Alois P. Heinz) %o A181853 @CachedFunction %o A181853 def b(n, k): %o A181853 if k == 0: return [1] %o A181853 w = b(n-1, k) if k<n else [0] %o A181853 return w + [lcm(c,n) for c in b(n-1, k-1)] %o A181853 def T(n, k): return add(b(n, k)) %o A181853 flatten([[T(n, k) for k in (0..n)] for n in (0..10)]) %o A181853 # _Peter Luschny_, Jul 29 2013 %Y A181853 Row sums give A226037. %Y A181853 Cf. A065567, A096179, A181854. %K A181853 nonn,tabl %O A181853 0,5 %A A181853 _Peter Luschny_, Dec 06 2010