cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181858 a(n) = lcm(n^2, n!) / lcm(n^2, swinging_factorial(n)).

Original entry on oeis.org

1, 1, 1, 1, 1, 4, 4, 36, 18, 64, 576, 14400, 43200, 518400, 518400, 5080320, 12700800, 1625702400, 1625702400, 131681894400, 131681894400, 627056640000, 13168189440000, 1593350922240000
Offset: 0

Views

Author

Peter Luschny, Nov 21 2010

Keywords

Comments

A divisibility sequence, i.e., if m|n then a(m)|a(n). Except for n = 9 the prime factors of A181858(n) are the primes <= floor((n-1)/2). Using this fact the divisibility property can be proved. - Peter Luschny, Jan 10 2011

Crossrefs

Programs

  • Maple
    A181858 := n -> `if`(n=0, 1, ilcm(n^2,n!)/ilcm(n^2,n!/iquo(n,2)!^2));
  • Mathematica
    a[n_] := If[n == 0, 1, LCM[n^2, n!]/LCM[n^2, n!/Quotient[n, 2]!^2]];
    Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 18 2019 *)
  • PARI
    a(n)=lcm(n^2,n!)/lcm(n!/(n\2)!^2,n^2) \\ Charles R Greathouse IV, Feb 01 2013

Formula

a(n) = A181857(n) / A181860(n).