This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A181867 #4 Mar 30 2012 18:40:13 %S A181867 2,1,12,101,10012,10000101,1000000010012,100000000000010000101, %T A181867 1000000000000000000001000000010012, %U A181867 1000000000000000000000000000000000100000000000010000101 %N A181867 a(1) = 2, a(2) = 1. For n >= 3, a(n) is found by concatenating the first n-1 terms of the sequence in reverse order and then dividing the resulting number by a(n-1). %C A181867 Compare with A181754. Here we concatenate the terms of the sequence in reverse order before dividing by a(n-1). %C A181867 The calculations for the first few values of the sequence are %C A181867 ... a(3) = 12/1 = 12 %C A181867 ... a(4) = 1212/12 = 101 %C A181867 ... a(5) = 1011212/101 = 10012 %C A181867 ... a(6) = 100121011212/10012 = 10000101. %C A181867 For similarly defined sequences see A181864 through A181870. %F A181867 DEFINITION %F A181867 a(1) = 2, a(2) = 1, and for n >= 3 %F A181867 (1)... a(n) = concatenate(a(n-1),a(n-2),...,a(1))/a(n-1). %F A181867 RECURRENCE RELATION %F A181867 For n >= 2 %F A181867 (2)... a(n+2) = a(n) + 10^(F(n)-1), %F A181867 where F(n) = A000045(n) are the Fibonacci numbers. %F A181867 a(n) has F(n) digits. %p A181867 #A181867 %p A181867 M:=10: %p A181867 a:=array(1..M):s:=array(1..M): %p A181867 a[1]:=2:a[2]:=1: %p A181867 s[1]:=convert(a[1],string): %p A181867 s[2]:=cat(convert(a[2],string),s[1]): %p A181867 for n from 3 to M do %p A181867 a[n] := parse(s[n-1])/a[n-1]; %p A181867 s[n]:= cat(convert(a[n],string),s[n-1]); %p A181867 end do: %p A181867 seq(a[n],n = 1..M); %Y A181867 A000045, A181754, A181755, A181756, A181864, A181865, A181866, A181868, A181869, A181870 %K A181867 nonn,easy,base %O A181867 1,1 %A A181867 _Peter Bala_, Nov 28 2010