A181873 Denominators of coefficient array for minimal polynomials of sin(2Pi/n). Rising powers of x.
1, 1, 1, 1, 4, 1, 1, 1, 1, 16, 1, 4, 1, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 2, 1, 1, 64, 1, 16, 1, 2, 1, 1, 16, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1, 2, 1, 4096, 1, 1024, 1, 128, 1, 16, 1, 16, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 256, 1, 8, 1, 8, 1, 4, 1, 1, 8, 1, 1, 1, 1, 65536, 1, 4096, 1, 2048, 1, 512, 1, 256, 1, 32, 1, 16, 1, 4, 1, 1, 64, 1, 16, 1, 2, 1, 1, 262144, 1, 65536, 1, 8192, 1, 1024, 1, 1024, 1, 256, 1, 64, 1, 2, 1, 4, 1, 1, 4, 2, 1, 4096, 1, 64, 1, 64, 1, 32, 1, 4, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1
Offset: 1
Examples
[1, 1], [1, 1], [4, 1, 1], [1, 1], [16, 1, 4, 1, 1], [4, 1, 1], [64, 1, 8, 1, 4, 1, 1], [2, 1, 1], [64, 1, 16, 1, 2, 1, 1], [16, 1, 4, 1, 1],... The rational coefficients A181872(n,m)/a(n,m) start with: [0, 1], [0, 1], [-3/4, 0, 1], [-1, 1], [5/16, 0, -5/4, 0, 1], [-3/4, 0, 1], [-7/64, 0, 7/8, 0, -7/4, 0, 1], [-1/2, 0, 1], [-3/64, 0, 9/16, 0, -3/2, 0, 1],...
References
- See A181872.
Links
- See A181872.
Programs
-
Mathematica
p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Denominator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)
Comments