cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181873 Denominators of coefficient array for minimal polynomials of sin(2Pi/n). Rising powers of x.

Original entry on oeis.org

1, 1, 1, 1, 4, 1, 1, 1, 1, 16, 1, 4, 1, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 2, 1, 1, 64, 1, 16, 1, 2, 1, 1, 16, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1, 2, 1, 4096, 1, 1024, 1, 128, 1, 16, 1, 16, 1, 4, 1, 1, 64, 1, 8, 1, 4, 1, 1, 256, 1, 8, 1, 8, 1, 4, 1, 1, 8, 1, 1, 1, 1, 65536, 1, 4096, 1, 2048, 1, 512, 1, 256, 1, 32, 1, 16, 1, 4, 1, 1, 64, 1, 16, 1, 2, 1, 1, 262144, 1, 65536, 1, 8192, 1, 1024, 1, 1024, 1, 256, 1, 64, 1, 2, 1, 4, 1, 1, 4, 2, 1, 4096, 1, 64, 1, 64, 1, 32, 1, 4, 1, 4, 1, 1, 1024, 1, 256, 1, 64, 1, 4, 1, 4, 1, 1
Offset: 1

Views

Author

Wolfdieter Lang, Jan 13 2011

Keywords

Comments

The corresponding numerator array is given in A181872(n,m) where details, references, and a W. Lang link are given.
The sequence of row lengths of this array is d(n)+1 with d(n)=A093819(n): [2, 2, 3, 4, 5, 3, 7, 3, 7, 5, 11,... ].

Examples

			[1, 1], [1, 1], [4, 1, 1], [1, 1], [16, 1, 4, 1, 1], [4, 1, 1], [64, 1, 8, 1, 4, 1, 1], [2, 1, 1], [64, 1, 16, 1, 2, 1, 1], [16, 1, 4, 1, 1],...
The rational coefficients A181872(n,m)/a(n,m) start with:
[0, 1], [0, 1], [-3/4, 0, 1], [-1, 1], [5/16, 0, -5/4, 0, 1], [-3/4, 0, 1], [-7/64, 0, 7/8, 0, -7/4, 0, 1], [-1/2, 0, 1], [-3/64, 0, 9/16, 0, -3/2, 0, 1],...
		

References

Crossrefs

Cf. A181875/A181876 (minimal polynomials of cos(2Pi/n)).
Cf. A181872.

Programs

  • Mathematica
    p[n_, x_] := MinimalPolynomial[ Sin[2 Pi/n], x]; Flatten[ Denominator[ Table[ coes = CoefficientList[ p[n, x], x]; coes / Last[coes], {n, 1, 22}]]] (* Jean-François Alcover, Nov 07 2011 *)

Formula

a(n,m)=denominator([x^m]Pi(n,x)), n>=1, m=0,1,...,d(n), with the d(n)=A093819(n), and Pi(n,x) the minimal polynomials of sin(2*Pi/n) given in A181872.