A181875 Numerator of coefficient array of minimal polynomials of cos(2Pi/n). Rising powers in x.
-1, 1, 1, 1, 1, 1, 0, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, 0, 1, 1, -3, 0, 1, -1, -1, 1, 1, 3, -3, -1, 1, 1, -3, 0, 1, -1, 3, 3, -1, -5, 1, 1, 1, -1, -1, 1, 1, 1, -1, -1, 1, 1, 0, -1, 0, 1, 1, -1, -5, 5, 15, -3, -7, 1, 1, -1, -3, 0, 1, 1, 5, -5, -5, 15, 21, -7, -2, 1, 1, 5, 0, -5, 0, 1, 1, -1, 1, 3, -3, -1, 1, -1, 3, 3, -1, -1, 1, -1, -3, 15, 35, -35, -7, 7, 9, -9, -5, 1, 1, 1, 0, -1, 0, 1, -1, 5, 25, -5, -25, 1, 35, 0, -5, 0, 1, -1, -3, 3, 1, -5, -1, 1, 1, 9, 0, -15, 0, 27, 0, -9, 0, 1, -7, 0, 7, 0, -7, 0, 1, -1, 7, 7, -7, -63, 63, 105, -15, -165, 55, 33, -3, -13, 1, 1, 1, -1, -1, 1, 1
Offset: 1
Examples
Rows begin: [-1, 1], [1, 1], [1, 1], [0, 1], [-1, 1, 1], [-1, 1], [-1, -1, 1, 1], [-1, 0, 1], [1, -3, 0, 1], [-1, -1, 1], ... Array of rationals a(n,m)/A181876(n,m): [-1, 1], [1, 1], [1/2, 1], [0, 1], [-1/4, 1/2, 1], [-1/2, 1], [-1/8, -1/2, 1/2, 1], [-1/2, 0, 1], [1/8, -3/4, 0, 1], [-1/4, -1/2, 1], ... Psi(5,x) has the zeros cos(2*Pi/5)=(phi-1)/2 and cos(4*Pi/5)=-phi/2 with phi:=(1+sqrt(5))/2 (golden section).
References
- I. Niven, Irrational Numbers, The Math. Assoc. of America, second printing, 1963, distributed by John Wiley and Sons.
Links
- S. Beslin and V. de Angelis, The minimal Polynomials of sin(2pi/p) and cos(2pi/p), Mathematics Mag. 77.2 (2004) 146-9.
- Mamoru Doi, Polynomial sequences with the same recurrence relation as Chebyshev polynomials and the minimal polynomial of cos(2*pi/n), arXiv:2501.16478 [math.GM], 2025. See p. 12.
- Wolfdieter Lang, A181875/A181876. Minimal polynomials of cos(2Pi/n).
- Wolfdieter Lang, The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon, arXiv preprint arXiv:1210.1018 [math.GR], 2012-2017. - From _N. J. A. Sloane_, Dec 30 2012
- D. H. Lehmer, A Note on Trigonometric Algebraic Numbers, Am. Math. Monthly 40,3 (1933) 165-6.
- D. Surowski and P. McCombs, Homogeneous Polynomials and the Minimal Polynomials of cos(2pi/n), Missouri J. of Math. Sciences, 15,1 (2003) 4-14.
- William Watkins and Joel Zeitlin, The Minimal Polynomial of cos(2Pi/n), Am. Math. Monthly (1993) Vol. 100, No. 5, 471-4.
Programs
-
Mathematica
ro[n_] := Numerator[ cc = CoefficientList[ MinimalPolynomial[ Cos[2*Pi/n], x], x] ; cc / Last[cc]]; Flatten[ Table[ ro[n], {n, 1, 30}]] (* Jean-François Alcover, Sep 27 2011 *)
Formula
a(n,m) = numerator([x]^m Psi(n,x)), n>=1, m=0,1,..,d(n), with d(n):=A023022(n) and d(1):=1, where Psi(n,x) has been defined in the comment above and is given by Psi(n,x) = Product_{k=0..floor(n/2) and gcd(k,n)=1} (x-cos(2*Pi*k/n)), n>=1.
Comments