A181876 Denominators of coefficient array of minimal polynomials of cos(2*Pi/n). Rising powers in x.
1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 2, 1, 8, 2, 2, 1, 2, 1, 1, 8, 4, 1, 1, 4, 2, 1, 32, 16, 8, 1, 2, 1, 4, 1, 1, 64, 32, 8, 2, 4, 2, 1, 8, 2, 2, 1, 16, 2, 1, 2, 1, 8, 1, 1, 1, 1, 256, 32, 32, 16, 16, 4, 4, 2, 1, 8, 4, 1, 1, 512, 256, 64, 16, 32, 16, 8, 1, 2, 1, 16, 1, 4, 1, 1, 64, 4, 2, 4, 2, 2
Offset: 1
Examples
[1,1], [1,1], [2,1], [1,1], [4,2,1], [2,1], [8,2,2,1], [2,1,1], [8,4,1,1], [4,2,1], ...
References
- See A181875.
Links
- See A181875.
Programs
-
Mathematica
ro[n_] := Denominator[ cc = CoefficientList[ MinimalPolynomial[ Cos[2*Pi/n], x], x] ; cc/Last[cc]]; Flatten[Table[ro[n], {n, 1, 21}]] (* Jean-François Alcover, Sep 27 2011 *)
Formula
a(n,m) = denominator([x^m]Psi(n,x)), with the minimal polynomial Psi(n,x) of cos(2*Pi/n), n >= 1. See A181875 for details and references.
Comments