cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A181876 Denominators of coefficient array of minimal polynomials of cos(2*Pi/n). Rising powers in x.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 1, 2, 1, 8, 2, 2, 1, 2, 1, 1, 8, 4, 1, 1, 4, 2, 1, 32, 16, 8, 1, 2, 1, 4, 1, 1, 64, 32, 8, 2, 4, 2, 1, 8, 2, 2, 1, 16, 2, 1, 2, 1, 8, 1, 1, 1, 1, 256, 32, 32, 16, 16, 4, 4, 2, 1, 8, 4, 1, 1, 512, 256, 64, 16, 32, 16, 8, 1, 2, 1, 16, 1, 4, 1, 1, 64, 4, 2, 4, 2, 2
Offset: 1

Views

Author

Wolfdieter Lang, Jan 08 2011

Keywords

Comments

The corresponding numerator array is A181875(n,m).
The sequence of row lengths is d(n)+1, with d(n):=A023022(n), n >= 2, and d(1):=1: [2, 2, 2, 2, 3, 2, 4, 3, 4, 3, 6, 3, 7, 4, 5, 5, 9, 4, 10, 5, 7, ...].
For details on the monic, minimal degree rational polynomial with one of its zeros cos(2*Pi/n), n >= 1 (so-called minimal polynomial of cos(2*Pi/n)), see the array A181875(n,m) where also references are found.

Examples

			[1,1], [1,1], [2,1], [1,1], [4,2,1], [2,1], [8,2,2,1], [2,1,1], [8,4,1,1], [4,2,1], ...
		

References

Crossrefs

Programs

  • Mathematica
    ro[n_] := Denominator[ cc = CoefficientList[ MinimalPolynomial[ Cos[2*Pi/n], x], x] ; cc/Last[cc]]; Flatten[Table[ro[n], {n, 1, 21}]] (* Jean-François Alcover, Sep 27 2011 *)

Formula

a(n,m) = denominator([x^m]Psi(n,x)), with the minimal polynomial Psi(n,x) of cos(2*Pi/n), n >= 1. See A181875 for details and references.